
Georg Krempl Vincent Lemaire Daniel Kottke
Adrian Calma Andreas Holzinger Robi Polikar
Bernhard Sick (Eds.)

IAL@ECML PKDD 2018

Workshop on
Interactive Adaptive Learning

Proceedings

The European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases

(ECML PKDD 2018)

Dublin, Ireland, September 10, 2018



c© 2018 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.



Preface

Science, technology, and commerce increasingly recognize the importance of ma-
chine learning approaches for data-intensive, evidence-based decision making.

This is accompanied by increasing numbers of machine learning applica-
tions and volumes of data. Nevertheless, the capacities of processing systems
or human supervisors or domain experts remain limited in real-world applica-
tions. Furthermore, many applications require fast reaction to new situations,
which means that first predictive models need to be available even if little data is
yet available. Therefore approaches are needed that optimize the whole learning
process, including the interaction with human supervisors, processing systems,
and data of various kind and at different timings: techniques for estimating the
impact of additional resources (e.g. data) on the learning progress; techniques
for the active selection of the information processed or queried; techniques for
reusing knowledge across time, domains, or tasks, by identifying similarities and
adaptation to changes between them; techniques for making use of different types
of information, such as labeled or unlabeled data, constraints or domain knowl-
edge. Such techniques are studied for example in the fields of adaptive, active,
semi-supervised, and transfer learning. However, this is mostly done in separate
lines of research, while combinations thereof in interactive and adaptive ma-
chine learning systems that are capable of operating under various constraints,
and thereby address the immanent real-world challenges of volume, velocity and
variability of data and data mining systems, are rarely reported.

Therefore, this workshop aims to bring together researchers and practi-
tioners from these different areas, and to stimulate research in interactive and
adaptive machine learning systems as a whole. This workshop aims at discussing
techniques and approaches for optimizing the whole learning process, including
the interaction with human supervisors, processing systems, and includes adap-
tive, active, semi-supervised, and transfer learning techniques, and combinations
thereof in interactive and adaptive machine learning systems. Our objective is to
bridge the communities researching and developing these techniques and systems
in machine learning and data mining. Therefore we welcome contributions that
present a novel problem setting, propose a novel approach, or report experience
with the practical deployment of such a system and raise unsolved questions to
the research community.

All in all, we accepted five regular papers (7 papers submitted) and six
short papers (7 submitted) to be published in these workshop proceedings. The
authors discuss approaches, identify challenges and gaps between active learning
research and meaningful applications, as well as define new application-relevant
research directions. We thank the authors for their submissions and the program
committee for their hard work.
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On the Labeling Correctness in  
Computer Vision Datasets 

 

Mohammed Al-Rawi and Dimosthenis Karatzas 

Computer Vision Center, Universidad Autonoma de Barcelona, Bellaterra, Spain 
al-rawi@cvc.uab.es 

Abstract. Image datasets have heavily been used to build computer vision sys-
tems. These datasets are either manually or automatically labeled, which is a 
problem as both labeling methods are prone to errors. To investigate this prob-
lem, we use a majority voting ensemble that combines the results from several 
Convolutional Neural Networks (CNNs). Majority voting ensembles not only en-
hance the overall performance, but can also be used to estimate the confidence 
level of each sample. We also examined Softmax as another form to estimate 
posterior probability. We have designed various experiments with a range of dif-
ferent ensembles built from one or different, or temporal/snapshot CNNs, which 
have been trained multiple times stochastically. We analyzed CIFAR10, 
CIFAR100, EMNIST, and SVHN datasets and we found quite a few incorrect 
labels, both in the training and testing sets. We also present detailed confidence 
analysis on these datasets and we found that the ensemble is better than the Soft-
max when used estimate the per-sample confidence. This work thus proposes an 
approach that can be used to scrutinize and verify the labeling of computer vision 
datasets, which can later be applied to weakly/semi-supervised learning. We pro-
pose a measure, based on the Odds-Ratio, to quantify how many of these incor-
rectly classified labels are actually incorrectly labeled and how many of these are 
confusing. The proposed methods are easily scalable to larger datasets, like 
ImageNet, LSUN and SUN, as each CNN instance is trained for 60 epochs; or 
even faster, by implementing a temporal (snapshot) ensemble. 

Keywords: Data annotation and labeling, ensembles, convolutional neural net-
works, semi-supervised learning 

1 Introduction 

Recent developments in deep neural network approaches have greatly advanced the 
performance of visual recognition systems. Most research and development are based 
on standard computer vision datasets that have been annotated manually1 or automati-
cally. Moreover, the computer vision community is devoted to building larger datasets 
containing tens, or even hundreds, of millions of samples, for example the JFT-300M 

                                                           
1  Amazon Mechanical Turk; Human intelligence through an API: https://www.mturk.com/ 
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data [1]. Dataset annotation and/or labeling is a difficult, confusing and time consuming 
task; and even after labeling, it is difficult to assess a dataset for label correctness, 
whether manually or automatically. One way, however, to verify the labeling is by hav-
ing a system that returns a confidence-level for each sample in the dataset, and not an 
overall system/classifier confidence, we illustrate the implementation of our ideas in 
Fig. 1.  

Although state-of-the-art deep learning architectures can produce posterior proba-
bilities, these probabilities may not be adequate to estimate the per-sample confidence-
level value [2]. However, one promising approach that can be used to measure the per-
sample confidence-level is by using ensemble classification methods. In ensemble 
learning, multiple classifiers can be combined to solve a specific classification task and 
they can be used to enhance the classification performance by compensating for the low 
performance of a poor classifier. Other important outcomes of ensemble learning in-
clude assigning a confidence-level, and/or posterior probability, to each sample in the 
testing set. Neural networks ensembles, nonetheless, have been investigated long before 
deep learning [3, 4]. After the deep learning boom in 2012, there has been quite a few 
works on ensembles built with deep nets deploying Convolutional Neural Networks 
(CNNs) [5-7]. Ensembles, in fact, can well be connected with deep learning frame-
works and they are currently being used in many research and development aspects, 
including challenges and competitions [8].  

 

 

Fig. 1. Data annotation that is normally used (left) and the proposed probabilistic analysis 
(right). 

Ensembles’ research work, however, have focused on improving the classification per-
formance, on different applications and not only image understanding, compared to 
using a single learning model [5, 6, 9-11], and quite a few of them won computer vision 
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challenges, see for example [6]. While the ensemble performance-improvement hy-
pothesis is effective and even supported by theoretical material, confidence analysis 
has not taken its expected share in the literature. Apart from this, and whenever com-
pared to works tackling the overall confidence-level of the classifier, the confidence 
should go down to a low-level similar to humans’ decision ability to be confident in 
their classification/decision for each sample/image. Such confidence analysis would 
highly be useful in weekly supervised learning, which was the goal of the work in [12], 
where the authors successfully implemented temporal ensembling. However, the au-
thors of [12] have not examined the per-sample confidence levels to perceive how this 
could be useful in data cleaning, i.e. in a semi-supervised fashion. Other works that 
differentiate between expert and novice annotators, and between strongly and weakly 
annotated, in the so called active learning [13-15]. These works usually focus on un-
certainty-based methods that usually ignore incorrectly labeled samples, and thus are 
sensitive to outliers [16, 17]. Furthermore, these works have not incorporated deep 
CNNs into active learning. The major aim therefore of this work is using deep CNNs 
to investigate the per-sample confidence level and compare it to the Softmax posterior 
probability, and to examine the possibility of using it to verify the labeling in computer 
vision datasets. The proposed approach can also find important application in weekly-
supervised / active learning scenarios.  We also aim to scrutinize the possibility of 
building ensemble classifier from one type of CNNs and compare the result to using 
different types of CNNs, including temporal ensembles, which will allow us to study 
the independence between the same kind of randomly trained CNN structures. 

2 Methods 

We tried different types of CNNs that have been trained with ImageNet (aka “Pre-
Trained Models”). Generally speaking, a pre-trained model can learn the features from 
images faster than a model  that starts from scratch (i.e. by randomly initializing its 
weights) [1]. In fact, some pre-trained models can reach an accuracy of 80% in three 
epochs on CIFAR10. For the ensemble classifier, we implemented voting schemes 
based on the predicted labels of the used classifiers. It has been proven that majority 
voting combination will always lead to a performance improvement for sufficiently 
large number of classifiers provided that the classifier outputs are independent [18]. To 
illustrate this further, consider a binary classifier and assuming that each classifier has 
a probability 𝑝 of making a correct decision, the ensemble’s probability (𝑝 ) of mak-
ing a correct decision has a binomial distribution [19]:  

𝑝 =
𝑀
𝑘

𝑝 (1 − 𝑝)
( / )

, 

where 𝑀 is the number of classifiers used to build the ensemble. From the above, if 
𝑝 > 0.5, 𝑝 → 1 when 𝑀 → ∞. Note that 𝑝 > 0.5 (above chance-level) is almost 
present in most successfully trained binary classifiers. A similar argument can simply 
be conjectured for multiclass ensembles as combining binary classifiers for multi-class 

(1)

On the Labeling Correctness in Computer Vision Datasets

3



4 

classification is a very familiar approach [20]. The vital issue that can be of concern 
here is the independence of the output of different classifiers.  

2.1 A measure to quantify the classified labels 

In this work, we used majority voting ensemble based on the classifiers’ output la-
bels, and the ensemble chooses the category/class that receives the largest total vote. 
The higher the votes each sample gets, the higher the confidence and the lower the votes 
the lower the confidence. We then used the highest confidence as a key indicator to find 
any incorrectly labeled samples; which is the per-sample confidence level when the 
ensemble votes are equal to the number of classifiers used to build it. To make some 
inferences from the high confidence of the ensemble we make use of 1) 𝑁 , which is 
the number of incorrect samples that have been classified with high confidence (these 
are the false positives) with probability 𝑝 = (𝑁 /𝑁), and 2) 𝑁 , which is the 
number of correct samples that have been classified with high confidence with proba-
bility 𝑝 = (𝑁 /𝑁), where  𝑁 is the number of testing samples. The value of 𝑝  
is of most interest as it indicates that all classifiers of the ensemble agreed (with high 
confidence) to incorrectly classify a sample. The high-confidence incorrectly classified 
samples will further be investigated to verify their labels. It is also possible that these 
incorrectly classified samples contain some of the difficult / confusing details that de-
ceived the ensemble, or the classifiers that were used to build the ensemble were not 
independent. To compare the performance of different ensembles, we will calculate the 
Odds Ratio (OR) using the formula [21]: 

𝑂𝑅 = 𝑝 (1 − 𝑝 )/(𝑝 (1 − 𝑝 )). 

The value of OR will be used to estimate the likeliness that the ensemble may pro-
duce false positives but with high confidence (on the assumption that all samples are 
correctly labeled/annotated), i.e. how likely the incorrect samples will be classified as 
correct ones with high confidence; hence, the lower the OR the better. An OR equals 
to one indicates that the classification of correct and incorrect samples with high confi-
dence is equally likely to occur. 

We used CIFAR10 and CIFAR100 [22] in all confidence analyses’ experiments. 
CIFAR10 is a well-known dataset that has heavily been investigated in the computer 
vision literature. It essentially has 50K 32×32 RGB image samples for training and 10K 
32×32 RGB image samples for testing, where each image belongs to one of ten classes; 
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each class thus 
has 5000 images in the training set and 1000 images in the testing set. CIFAR100, on 
the other hand, has a similar image structure but it has 100 classes distributed on 600 
samples and 500 samples in the training set and 100 samples in the testing set. To im-
plement our algorithms, we used PyTorch [23] as our main deep learning framework. 
Further details on the used methods and experimental setting can be found in the sup-
plemental material.  

We chose the VGG CNN family [24] (we will refer to VGG Ensemble; ‘VGG-E’) 
as they require less training time than other CNNs, and they can reach higher accuracy 
than other CNNs, when trained up to 60 epochs. We chose 60 epochs for the following 

(2)
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reasons: 1) to see how fast and how well the ensemble classifier can learn with confi-
dence 2) to reduce the execution time of ensembles, 3) following the Schapire’s idea 
on the strength of weak learnability [25], and 4) for the proposed methodology to be 
efficient and scalable when used on larger data sets. Some VGGs have Batch Normal-
ization (BN) others do not, thus they have been postfixed with ‘BN’, VGG11BN thus 
denotes VGG11 with batch normalization. In most analysis, we used eight VGG CNNs, 
these are: VGG11, VGG11BN, VGG13, VGG13BN, VGG16, VGG16BN, VGG19, 
VGG19BN.  

3 Results 

3.1 The Softmax Posterior Probability 

It is widely known that the CNNs, and neural networks in general, yield Posterior Prob-
abilities (PPs) as their outputs, when Softmax is used. It is not known, however, if these 
posterior probabilities can be used to estimate the per-sample confidence to an accurate 
degree. To investigate the confidence distribution of the correctly and incorrectly clas-
sified labels via Softmax outputs, we used CIFAR100 to train VGG19BN with the pre-
viously mentioned settings except that we increased the number of training epochs to 
600. We will refer to the condition where Softmax posterior probability equals one as 
high confidence. The typical situation of the PP of the incorrectly classified samples is 
to have an exponential distribution or, in the worst case, a normal distribution. The 
results of the training and testing are demonstrated in Table 1 and show that Softmax 
posterior probabilities of a single VGG have high OR values, and thus, may not be used 
as good estimates of the per-sample confidence level. This deduction is clearly depicted 
in Fig. 2 that shows the posterior probability distributions, where the incorrectly clas-
sified samples have a peek at PP=1 (PP=1 denotes high confidence as the probability is 
100%). We also perceive from Fig. 2 that the distribution of the PP values is right-
skewed for the incorrect labels, and this means using these PP values for the per-sample 
confidence level is not reliable. The presented Softmax results, in fact, copes with the 
neural networks posterior probabilities as being over-confidence estimates, as has been 
detailed in [2]. Our probability analysis provides further evidence of why adversarial 
attacks [26] are possible when using Softmax to state the confidence of the classified 
object/image.  

3.2 Ensembles Built with Different VGG Types 

Using CIFAR10, each VGG type was trained for up to 16 times, VGG-E thus has a 
total of 118 VGGs (Skipping chance-level local minima resulted sometimes in less than 
the planned 16×8 = 128 VGGs). The results of the discovered images with incorrect 
labels in the testing set are presented in Table 2. Our tests showed that there are a 9 
incorrect samples with high-confidence (voting is equal to the number of VGGs used 
to build the ensemble). Investigating the 9 false positives, we found that most of them 
have incorrectly been labeled in the testing set of CIFAR10. We also present in the 
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supplementary material a few samples that have high per-sample confidence level val-
ues but were incorrectly classified. After examination, however, these samples appear 
to be confusing. 

Table 1. VGG19BN output as posterior probability computed with Softmax, trained for 600 
epochs.  
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CIFAR10 
50K 10K 93.0 248 8702 0.004 
10K 50K 86.2 2957 39419 0.017 

       

CIFAR100 
50K 10K 72.8 377 5072 0.038 
10K 50K 58.8 2295 16733 0.095 
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Fig. 2. VGG19BN Softmax posterior probability distribution of the correctly classified labels 
(left column) and the incorrectly classified labels (right column); training with 10K and testing 
with 50K samples of CIFAR100 (top row) and training with 50K and testing with 10K samples 

of CIFAR100 (bottom row). 

To investigate correctness of the training set labels, we revert the training and testing 
datasets that are used to train the VGGs. In this case, we used CIFAR10 testing set (10K 
samples) for building the ensemble classifier and CIFAR10 training set (50K) for test-
ing it. After training, the VGG-E has a total of 126 different VGGs. This, in principle, 

N
um

be
r 

of
 s

am
pl

es
 

N
um

be
r 

of
 s

am
pl

es
 

On the Labeling Correctness in Computer Vision Datasets

6



7 

is more challenging than the previous experiment, and could be useful in weakly super-
vised learning. The results of the discovered incorrect labels are presented in Table 2. 
By investigating the 81 false positives, we found that some have incorrectly been la-
beled in the training set of CIFAR10, but some images have confusing content. A few 
samples discovered by the VGG-E are not only be confusing CNNs, but also to the 
human observer, see the supplementary material. We repeated the same above experi-
ments on Cifar100, which resulted in a VGG-E with 128 VGGs. The ensemble en-
hanced the accuracy by ~9% compared to the average of VGGs. A few incorrect labels 
in CIFAR100’s testing, as well in the training set, are demonstrated in supplemental 
material. The analysis of these ensembles are summarized in Table 3, and the per-sam-
ple confidence distributions are shown in Fig. 3. 

We can see from Table 2 that the frog (which has an index 2405 in the data) is 
labeled as a cat in CIFAR10 testing set, but the VGG-E managed to predict the correct 
label (more results are shown in the supplemental material). The amount of incorrect 
labels in CIFAR100 is higher, for example, a bottle (which has an index of 7762) is 
labeled as a cup, other images with incorrect labeling also exist. Nonetheless, by in-
specting these images, one can admire the work that CNNs can achieve in classifying 
these CIFAR images, as most of the times the details are not clear even for the human 
observer, due to using the so called tiny images (as each image has a size of 32×32). 
Thus, using CNNs ensembles would assist inspecting and verifying the labeling, as 
proposed in this work. 

Table 2. Some Incorrect Labels Discovered by VGG-E in CIFAR10.  
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7(horse) 
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6 (frog) 
4 (deer) 
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1 (car) 

9 (truck) 

 

6319 
3 (cat) 

4 (deer) 

 

33079 
5 (dog) 

7 (horse) 

 

7008 
2 (bird) 
4 (deer) 

 

8803 
3(cat) 
5(dog) 

* Index (The Index of the image in CIFAR10); Original label; Predicted label; and Image of Predicted label. 

3.3 Experiments with the EMNIST dataset 

The same experimental strategy used for CIFAR10&100 has been implemented on the 
EMNIST dataset [27]. The EMNIST dataset, which is derived from the NIST Special 
Database, has been compiled from a set of handwritten English characters and Arabic 
digits and has been suggested as a more challenging replacement to the MNIST dataset. 
The EMNIST ‘By Class’ split has 814,255 images distributed over 62 unbalanced clas-
ses. Pixel image format and dataset structure that directly matches the MNIST dataset, 
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each image is 28x28 gray-level. EMNIST is extremely challenging, on the labeling and 
testing levels, as it has upper and lower case confusion, in addition to numeral value 
one (1) versus letter (lower case L; l), O versus 0/zero, 9 versus q, etc. In fact, our 
analysis shows that this confusion has been present at the labeling/annotation stage.  

 

 

Fig. 3. Per-sample confidence distribution, correctly classified labels (top row) and incorrectly 
classified labels (bottom row) in CIFAR10 and CIFAR100. 

Table 3. VGG-E using 16 classifier instances of each VGG type, a total of 128 VGGs to build 
the VGG-E.  
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CIFAR10  
50K 10K 90.84 ± 0.95 94.2 9 5734 0.0006 

10K 50K 86.10 ± 1.07 90.2 81 23024 0.002 

       

CIFAR100  
50K 10K 69.5 ± 0.14 78.2 15 2446 0.005 

10K 50K 57.06±1.5 67.06 84 6687 0.01 

 
As for the results, the ensemble gave a classification accuracy 0.87 when trained 

using the training set. Furthermore, in the testing set, the incorrectly labeled samples 
that got recognized by the ensemble, with high confidence, is 2,837, while the correct 
samples that got recognized by the ensemble, with high confidence, is 83,467, and the 
quantitative measure OR is 0.0098. To inspect the labeling of the training set, we trained 
the ensemble with the testing, which gave classification accuracy of 0.85. The number 
of incorrect samples that got recognized by ensemble with confidence is 9,154, the cor-
rect samples that got recognized by the ensemble with high confidence is 408,588, and 
the quantitative measure OR is 0.0094. The confidence distributions are illustrated in 
Fig. 4. Due to space limitations, incorrect/confusing EMNIST images are demonstrated 
in the supplemental material. 
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                           Confidence 

               Low       →    →    →    →   High 

 
                           Confidence 
              Low       →    →    →    →   High 

Fig. 4. Per-sample confidence distribution training set (top row) and testing set (bot-
tom row); correctly classified labels (left) and incorrectly classified labels (right) in 
EMNIST dataset. 

3.4 Experiments with the SVHN dataset 

SVHN [28] is a real-world image digit dataset that has been inspired by MNIST struc-
ture (e.g., the images are of small cropped digits) but comes from a significantly harder, 
unsolved, real world problem (recognizing digits and numbers in natural scene images). 
SVHN, which contains 73257 digits for training and 26032 digits for testing, has been 
obtained from house numbers in Google Street View images. Using the training set for 
training, the classification accuracy of the ensemble is 95.14. The number of incorrect 
samples that got recognized by all the CNNs is 129 and the number of correctly-labeled 
samples that got recognized by the ensemble is 20887, yielding OR= 0.0012. Inspecting 
the label correctness in the training set showed that the number of incorrect labels that 
got recognized by the ensemble with high confidence is 267 with OR= 0.0018 (classi-
fication accuracy of the ensemble is 93.69). The confidence distributions are illustrated 
in Fig. 5. Due to space limitations, selected incorrect/confusing SVHN images that have 
been detected with our approach are demonstrated in the supplemental material. 

4 Conclusion 

It is of high interest in computer vision to have a system that can conjecture with con-
fidence what is wrong and what is right, i.e., to confidently guess which labels are cor-
rectly and/or incorrectly classified. This work is a step in that direction. This paper 
presents the use of CNN ensembles to detect incorrect labels in image classification 
datasets. Essentially, if the ensemble is confident on a result which is incorrect, either 
the sample is indeed visually confusing or it was incorrectly labelled. Probabilistic con-
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fidence analyses showed that some images with incorrect labeling and confusing con-
tent exist. Fig. 6 summarizes the results of CIFAR10 & 100 and illustrates that the OR 
values of Softmax posterior probabilities are higher than the OR values of the ensemble 
posterior probabilities; the lower the OR values the better. Hence, the posterior proba-
bility of a CNN, measured with Softmax, cannot be used to accurately estimate the per-
sample confidence level. Furthermore, the proposed OR analysis provided a novel ev-
idence that batch normalization increases the ensemble confidence, thus, could be re-
lated to improving generalization. 

 

  

 
                           Confidence 

               Low       →    →    →    →   High 

 
                           Confidence 
              Low       →    →    →    →   High 

Fig. 5. Per-sample confidence distribution training set (top row) and testing set (bottom row); 
correctly classified labels (left) and incorrectly classified labels (right) in SVHN dataset 

 

Fig. 6. VGG-E (ensemble) versus Softmax posterior probability. 

Our analyses also agreed with previous ensemble works as the overall accuracy has 
been increased by around 5%, 9%, 2%, 5% for CIFAR10, CIFAR100, SVHN, and 
EMNIST respectively. Based on the proposed probabilistic methods and by making use 
of the snapshot ensemble (supplemental material), we are currently building a labeling 
verification tool to be implemented in PyTorch framework. This tool will be useful not 
only in labeling verification, but can also be used in semi-supervised and active learning 
applications. Evaluations on other datasets are left for future work. 

0
0.02
0.04
0.06
0.08

0.1

         CIFAR10          CIFAR100

O
R

VGG-E Softmax

N
um

be
r 

of
 s

am
pl

es
 

N
um

be
r 

of
 s

am
pl

es
 

N
um

be
r 

of
 s

am
pl

es
 

N
um

be
r 

of
 s

am
pl

es
 

On the Labeling Correctness in Computer Vision Datasets

10



11 

References 

1. Sun, C., et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning 
Era. in 16th IEEE International Conference on Computer Vision (ICCV). 2017. 
Venice, ITALY. 

2. Ju, C., A. Bibaut, and M. J. van der Laan, The Relative Performance of Ensemble 
Methods with Deep Convolutional Neural Networks for Image Classification. 
2017, http://arxiv.org/abs/1704.01664. 

3. Hansen, L.K. and P. Salamon, Neural Network Ensembles. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 1990. 12(10): p. 993-1001. 

4. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 
436-444. 

5. Chen, J.L., et al. An Ensemble of Convolutional Neural Networks for Image 
Classification Based on LSTM. in 2017 International Conference on Green 
Informatics (ICGI). 2017. 

6. Ding, C.X. and D.C. Tao, Trunk-Branch Ensemble Convolutional Neural 
Networks for Video-Based Face Recognition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 2018. 40(4): p. 1002-1014. 

7. Schmidhuber, J., Deep learning in neural networks: An overview. Neural 
Networks, 2015. 61: p. 85-117. 

8. Minetto, R., M. Pamplona Segundo, and S. Sarkar. Hydra: an Ensemble of 
Convolutional Neural Networks for Geospatial Land Classification. in 
https://arxiv.org/abs/1802.03518. 2018. 

9. Chen, G.B., et al. Ensemble Application of Convolutional and Recurrent Neural 
Networks for Multi-label Text Categorization. in International Joint Conference 
on Neural Networks (IJCNN). 2017. Anchorage, AK. 

10. Duan, M.X., K.L. Li, and K.Q. Li, An Ensemble CNN2ELM for Age Estimation. 
IEEE Transactions on Information Forensics and Security, 2018. 13(3): p. 758-
772. 11. Diaz-Vico, D., et al., Deep Neural Networks for Wind and Solar Energy 
Prediction. Neural Processing Letters, 2017. 46(3): p. 829-844. 

12. Laine, S. and T. Aila, Temporal Ensembling for Semi-Supervised Learning, in 
International Conference on Learning Representations (ICLR). 2017. 

13. Yang, Y.Z. and M. Loog, A variance maximization criterion for active learning. 
Pattern Recognition, 2018. 78: p. 358-370. 

14. Reyes, O., A.H. Altalhi, and S. Ventura, Statistical comparisons of active learning 
strategies over multiple datasets. Knowledge-Based Systems, 2018. 145: p. 274-
288. 

15. Wang, K.Z., et al., Cost-Effective Active Learning for Deep Image Classification. 
IEEE Transactions on Circuits and Systems for Video Technology, 2017. 27(12): 
p. 2591-2600. 

16. Freund, Y., et al., Selective sampling using the query by committee algorithm. 
Machine Learning, 1997. 28(2-3): p. 133-168. 

17. Bujrbidge, R., J.J. Rowland, and R.D. King, Active learning for regression based 
on query by committee. Intelligent Data Engineering and Automated Learning - 
Ideal 2007, 2007. 4881: p. 209-218. 

18. Bishop, C.M., Pattern Recognition and Machine Learning (Information Science 
and Statistics). 2006: Springer-Verlag New York, Inc. . 

On the Labeling Correctness in Computer Vision Datasets

11



12 

19. Monteith, K., et al. Turning Bayesian Model Averaging Into Bayesian Model 
Combination. in International Joint Conference on Neural Networks (IJCNN). 
2011. 

20. Shiraishi, Y. and K. Fukumizu, Statistical approaches to combining binary 
classifiers for multi-class classification. Neurocomputing, 2011. 74(5): p. 680-688. 

21. Rao, P.S., Proportions, Odds Ratios and Relative Risks, in Statistical 
Methodologies with Medical Applications. 2017, Wiley. 

22. Krizhevsky, A., Learning Multiple Layers of Features from Tiny Images, 
Technical Report. 2009, http://www.cs.toronto.edu/~kriz/cifar.html: Canadian 
Institute for Advanced Research. 

23. Paszke, A., et al. Automatic differentiation in PyTorch. in NIPS 2017 Autodiff 
Workshop. 2017. 

24. Simonyan, K. and A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. in International Conference on Learning 
Representations. 2015. 

25. Schapire, R.E., The Strength of Weak Learnability. Machine Learning, 1990. 5(2): 
p. 197-227. 

26. Li, X. and F.X. Li. Adversarial Examples Detection in Deep Networks with 
Convolutional Filter Statistics. in 16th IEEE International Conference on 
Computer Vision (ICCV). 2017. Venice, ITALY. 

27. Cohen, G., et al., EMNIST: an extension of MNIST to handwritten letters. (2017): 
https://www.nist.gov/itl/iad/image-group/emnist-
dataset      http://arxiv.org/abs/1702.05373. 

28. Netzer, Y., et al., Reading Digits in Natural Images with Unsupervised Feature 
Learning, in NIPS Workshop on Deep Learning and Unsupervised Feature 
Learning. 2011: http://ufldl.stanford.edu/housenumbers/. 

 
  

On the Labeling Correctness in Computer Vision Datasets

12



13 

Supplemental Material 
 

Experimental Setting 

The following parameters have been used in all experiments: dropout probability is 0.2; 
maximum number of epochs is 60; learning rate is 0.01 (the learning rate is set to de-
crease by half according to the following milestones = {8, 20, 48); unless mentioned 
otherwise); momentum=0.95; the seed was randomly pulled from the time function; 
weight-decay=0.0005; Nestrove momentum was used; SGD optimizer; 100 mini 
batches, random shuffling enabled, and Cross Entropy Loss. The run/training, however, 
was skipped if the CNN is stuck at a chance-level local minima (~10% for CIFAR10 
and ~1% for CIFAR100), and a new training instance is launched with a new random 
seed. To demonstrate the possible variations in training each CNN of the ensemble, we 
present the training progress of various VGGs in Fig-Sup. 1. 
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Fig-Sup. 1. Variations of the training progress of the different ensembles built from 
CIFAR10 and CIFAR100 data. Training with 50K and testing with 10K (left column) and 

training with 10K and testing with 50K (right column). 

 

In our preliminary analysis, we built ensembles using different CNN architectures; 
including, different types of ResNets*, VGGs* DualPathNets* (DPNs), DenseNets*, 
NasNetLarge, etc. However, we chose to build the ensembles via the VGG net family 
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as they require less training time than the other CNN types, they give similar perfor-
mance to the ensemble built from different CNN architectures, and they result much 
higher accuracy than other CNNs, when trained up to 60 epochs. To give an example, 
NasNetLarge requires 9X times the training time of VGG11 and 5X times of 
VGG19BN. The classification accuracy of NasNetLarge gets to 75% compared to 
above 85% for all VGG types, when trained up to 60 epochs. To clarify further, for a 
maximum of 60 epochs, VGG11 reaches 85% accuracy in less than 6 minutes, while 
ResNet18 gets to 78% accuracy in 7 minutes, but NasNetLarge gets to 75% accuracy 
in 71 minutes. In general, the DPN, SqueezNet, and ResNet (including Resnext*) fam-
ilies are slower than VGGs and/or can get less than 80% accuracy in 60 epochs.  

Ensembles Built with a Single VGG Type 

In this experiment, we used 16 classifier instances to see how do they perform com-
pared to using different VGG classifiers. The training has been performed with the 10K 
testing set, and the testing has been performed using the 50 training set, as it is more 
challenging than using the sets in training the other way around. Table 4 summarizes 
the results. From Table 4 we notice that Batch-Normalization always leads to better 
confidence, when the same CNN is used, as the OR is less when using BN, that is it is 
less likely to have false positives with high confidence when BN is used. 

 
Table 4. VGG-E using 16 classifier instances of each VGG type; using 10K for training 

and 50K for testing of CIFAR10. 

    VGG-E Average accu-
racy over 
VGGs % 

Accuracy 
of VGG-

E % 

#Confidently 
classified, but in-

correct 

#Confidently 
classified and 

correct 

OR 

VGG19BN  86.78 ± 0.11 90 424 33073 0.0043 

VGG16BN  87.48 ± 0.15 91 446 33892 0.0042 

VGG13BN  86.95 ± 0.11 90 466 33559 0.0046 

VGG11BN  84.79 ± 0.12 88 556 31506 0.0066 

VGG19  86.27 ± 0.33 89 607 33657 0.0059 

VGG16  86.31 ± 0.22 89 651 34120 0.0061 

VGG13  86.09 ± 0.13 89 706 34156 0.0076 

VGG11  84.11 ± 0.15 87 834 32379 0.0092 

 
From Table 4 we see that VGG11 has the weakest performance compared to other 

VGGs, thus, we took this experiment further to build one VGG-E using 128 VGG11s 
and another using 128 VGG13BN using CIFAR10 testing set for training. The VGG-E 
increased the performance by ~5%., but the confidence levels, as shown in the OR val-
ues, are better when using different VGG models than using only one VGG model, as 
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shown in Table 5. Thus, a VGG-E built using 128 VGGs results, given by the OR val-
ues, are not as good as a VGG-E built using different types of VGGs. 
 

Table 5. VGG-E with 126 VGGs of the same type (CIFAR10); using 10K for training and 
50K for testing. 

 Mean accu-
racy over 
VGGs % 

Accuracy 
of VGG-

E % 

#Confidently 
classified, but 

incorrect 

#Confidently 
classified and 

correct 

OR 

VGG13BN  87.50 ± 0.13 90.9 116 26569 0.0020 

VGG11  87.48 ± 0.15 87.3 229 25277 0.0045 

 

Temporal (snapshot) Ensemble (VGG-ET) 

We used VGG19BN to build a temporal ensemble for CIFAR100; training with 50K 
and testing with 10K. In this case, each epoch resulted a classifier. We used 150 epochs 
and neglected the results of the first ten epochs, as we opted for the training to reach a 
state of stability. Similar to VGG-E, VGG-ET was able to determine quite a few incor-
rect labels, and to produce descent per-sample confidence values. The VGG-ET 
reached an accuracy of 76.8% (slightly lower than VGG-E), and an OR (at high confi-
dence) of 0.004. Thus, this snapshot/temporal ensemble could be used instead of an 
ensemble built from the different CNN architectures, which can be used to build a fast 
and efficient labeling verification tool, which is a future work we are trying. The con-
fidence distributions are demonstrated in Fig-Sup. 2.  

 
Fig-Sup. 2. Per-sample confidence distribution, incorrectly classified labels (left) and cor-
rectly classified labels (right), using temporal (snapshot) ensemble VGG-ET (VGG19BN). 

Extended Results 

In the tables below, we demonstrate using a few samples that we have selected from 
the incorrect labeled ones detected by the probability analysis. The labels of the sam-
ples and the corresponding predicted labels, along with the corresponding image, are 
shown. To double check the incorrectness, by third parties, the readers of this article 
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may use the index of the sample to examine it in the dataset, i.e. by loading the image 
and the corresponding label. The tables contain data from CIFAR10, CIFAR100, 
SVHN, and EMNIST datasets. 

 
Table 6. Selected incorrectly labeled images detected in CIFAR100 training set; predicted 

with high confidence 

T
es

ti
ng

 s
et

 

7762 
28 (cup) 
9 (bottle) 

 

5764 
99 (worm) 
78 (snake) 

 

9601 
33 (forest) 
49 (moun-
tain) 

 

6927 
92 (tulip) 

54 (orchid) 

 

8951 
47 (maple tree) 
52 (oak tree) 

 

4460 
59 (pine 
tree) 
52 (oak 
tree) 

 

1557 
10 (bowl) 
28 (cup) 

 

8071 
5 (bed) 

94 (ward-
robe) 

 

1100* 
72 (seal) 
55 (otter) 

 

2172 
99 (worm) 
78 (snake) 

 

9298 
17 (castle) 
37 (house) 

 

1357 
96 (willow tree) 

52 (oak 
tree) 

 

T
ra

in
in

g 
Se

t 

687 
59 (pine tree) 

56 (palm tree) 

 

780 
37 (house) 
68 (road) 

 

7006 
10 (bowl) 
61 (plate) 

 

12455 
40 (lamp) 
28 (cup) 

 

10178 
42 (leopard) 

88 (tiger) 

 

39441 
11 (boy) 
2 (baby) 

 

32814 
90 (train) 

81 (streetcar) 

 

47936 
12 (bridge) 

76 (sky-
scraper) 

 

35209 
76 (sky-

scraper) 
69 (rocket) 

 

23509 
71(sea) 

60 (plain) 

 

16305 
60 (plane) 
71 (sea) 

 

22395 
81 (street-
car) 

90 (train) 

 

* We found the same image in the training test with index 24083 but has the label 55 (otter). So not only the same image 

was included in both training and testing sets, but with an incorrect/opposite label. 
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Table 7. Selected incorrectly labeled images detected in CIFAR100 testing set; predicted 
with high confidence 

Index Original label (class) Predicted label (class) Image Remarks 

1214 45 (lobster) 26(crab) 

 

 

5278 81(streetcar) 13(bus) 

 

 

6799 8(bicycle) 48(motorcycle) 

 

 

6927 92(tulip) 54(orchid) 

 

 

1100 72(seal) 55(otter) 

 

 

7429 70(rose) 68(road) 

 

 

7762 28(cup) 9(bottle) 

      

 

5873 50(mouse) 74(shrew) 
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Confusing Images Detected in CIFAR10 

 
Table 8. Selected confusing images detected in CIFAR10 test set; predicted with high con-

fidence 

Index Original label 
(class) 

Predicted 
label (class) 

Image Remarks 

811 3 (cat) 5 (dog) 

  

Hard to tell what this is! 

5416 9 (truck) 1 (car) 

 

This is a minivan, probably 
looks more like a car than a 
truck 

7099 3 (cat) 5 (dog) 

  

Probably the label is correct, 
but the tail is dominating the 
photo 

4794 4 (deer) 2 (bird) 

  

Difficult to infer which one is 
deer and which one is bird, even 
for the human observer 

9832 2 (bird) 4 (deer) 

  

Difficult to infer which one is 
deer and which one is bird, even 
for the human observer 

9503 2 (bird) 4 (deer) 

  

Difficult to infer which one is 
deer and which one is bird, even 
for the human observer 
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Table 9. Selected confusing images detected in CIFAR10 training set; high confidence pred 

Index Original label 
(class) 

Predicted la-
bel (class) 

Image Remarks 

32085 3 (cat) 5 (dog) 

 

Bird and cat in one picture! Clas-
sified as dog 

13694 8 (ship) 1 (car) 

 

Boat on top of a pull cart with 
wheels identified as car 

43283 3 (cat) 6 (frog) 

 

The image is not clear, probably 
of cat category, but classified as 
frog 

9119 0 (plane) 4 (deer) 

 

The image should be of category 
plane, yet it is not clear; classified 
as deer 

5867 2 (bird) 0 (plane) 

 

A very confusing object  

36288 9 (truck) 2 (bird) 

  

A truck with a ladder is hard to 
identify as a truck 

36788 6 (frog) 3 (cat) 

       

A frog that is hard to tell for the 
human observer 

34305 2 (bird) 4 (deer) 

  

Something that does not look 
very much like a bird has been 
identified as deer 
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Experiments with SVHN 

Table 10. Selected incorrectly labeled images detected in SVHN training set; predicted 
with high confidence 

Index Original la-
bel (class) 

Predicted 
label (class) 

Image Remarks 

3692 9 8 

 

 

6290 9 5 

 

 

6291 5 9 

 

 

6875 1 2 

 

 

6960 0 7 

 

This image has two digits, although 
there should only be one. It was la-
beled with zero, but the ensemble got 
the other digit correctly with high con-
fidence (7) 

9502 2 0 

      

 

9503 0 1 

 

 

17666 3 1 

 

As each image should only have 
one digit, this image has been incor-
rectly segmented and labeled with 3, 
the ensemble labeled it as 1 with high 
confidence. 
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Table 11. Selected incorrectly labeled images detected in SVHN testing set; predicted with 
high confidence  

Index Original label 
(class) 

Predicted la-
bel (class) 

Image Remarks 

1317 1 5 

 

The image is incorrectly seg-
mented, as it should have only one 
digit. 

Interestingly, the attention of the 
CNN is brought to the center 

3916 1 6 

 

Partially occluded with 5, but the 
ensemble got it correctly as 6. The 
original labels was incorrect with a 
value of 1. 

5397 0 3 

 

 

6500 1 2 

 

 

8250 1 5 

 

 

11844 5 1 

 

 

14678 7 2 

 

 

14526 1 8 
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Experiments with EMNIST  

Table 12. Selected incorrectly labeled images detected in EMNIST training set; predicted 
with high confidence  

Index Original label 
(class) 

Predicted 
label (class) 

Image Remarks 

104 t T 

 

 

13980 F e 

 

 

14283 a A 

 

 

15830 g 9 

 

 

18892 r e 

 

 

19781 6 h 

 

 

21248 T 7 

 

 
 

29785 z 2 
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Table 13. Selected incorrectly labeled images detected in EMNIST testing set; predicted 
with high confidence 

Index Original label (class) Predicted la-
bel (class) 

Image Remarks 

2371 (lower case L; l) L 

 

 

2202 b B 

 

 

2127 n N 

 

 

2618 g 9 

 

 

2640 B D 

 

 

2820 b h 

 

 

3369 6 b 

 

 

3515 r P 
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1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

tomas.sabata@fit.cvut.cz
2 Institute of Computer Science of the Czech Academy of Sciences,

Prague, Czech republic
{pulc,martin}@cs.cas.cz

Abstract. In multimedia classification, the background is usually con-
sidered an unwanted part of input data and is often modeled only to be
removed in later processing. Contrary to that, we believe that a back-
ground model (i.e., the scene in which the picture or video shot is taken)
should be included as an essential feature for both indexing and follow-
up content processing. Information about image background, however,
is not usually the main target in the labeling process and the number of
annotated samples is very limited.
Therefore, we propose to use a combination of semi-supervised and active
learning to improve the performance of our scene classifier, specifically
a combination of self-training with uncertainty sampling. As a result,
we utilize a combination of statistical features extractor, a feed-forward
neural network and support vector machine classifier, which consistently
achieves higher accuracy on less diverse data. With the proposed ap-
proach, we are currently able to achieve precision over 80% on a dataset
trained on a single series of a popular TV show.

Keywords: video data, scene classification, semi-supervised learning,
active learning, colour statistics, feedforward neural networks

1 Introduction

Automatic multimedia content labeling is still a comparatively difficult domain
for machine learning. High input data dimensionality requires large training data
sets, especially for approaches that are designed without prior assumptions on
the data properties.

Moreover, the increasing resolution of image sensors brings higher detail (and
thus, at least in theory, more information), but poses a significant issue for
training phases of virtually all machine learning algorithms.

Many approaches, therefore, have to introduce a trade-off concerning the
number of involved parameters, the number of distinct output labels (classes)
[26] and the resolution of the input imagery [7]. Alternatively, they have to use
only the statistical properties of the input data (as [3] and many others).
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We also need to tackle the limitation on the amount of labeled training data.
Recent trends in video content processing include a task usually called Video

to Text. The primary objective of such processing is to take multimedia content
and describe its main features in a human-comprehensible text. Such representa-
tion may contain gathered information on the scene, actors, objects and actions
in which they are involved. Such as the single image description “baseball player
is throwing ball in game,” as presented in [12].

Current approaches, however, commonly omit the information concerning
the visual appearance of the background in complex multimedia content – even
though such information might provide substantial contextual information for
the object detection and event description itself. Approaches that use neural net-
works are mostly data-driven and require large amounts of data to adapt to each
selected class. This requirement is, however, seldom met in smaller multimedia
collections, such as home video, university lecture recordings, movie studios or
corporate media databases.

We also want to reflect that a particular scene can be recalled by a human
from a couple of static frames. Therefore, manual scene labeling is a relatively
easy task as opposed to event labeling that may need the full video sequence
or object labeling that commonly requires drawing a bounding box around the
annotated object.

To use the limited human involvement in scene labeling as efficiently as possi-
ble, we employ semi-supervised learning to allow making use of unlabeled data,
which are substantially easier to obtain, whereas simultaneously selecting the
data for annotation using active learning methods.

The rest of this paper is organized as follows: In Section 2, we briefly sum-
marize the state of the art in scene classification in the context of single images
without significant obstruction by foreground objects, as well as the state of the
art in combining semi-supervised learning (SL) and active learning (AL). Section
3 describes our approach to scene recognition in video content. In Section 4, we
compare the accuracy of our method for different approaches to feature selection
and different classifiers.

2 State of the Art

Scene recognition is rather simple from the human perspective. Whether the
scene is the same as one previously visited is recognized by the overall layout of
the space, presence, and distribution of distinct objects, their texture, and color.
Other sensory organs can provide even more information and allow faster recall.
Scenes not visited beforehand may fall after a thorough exploration into one of
broader categories based on similarity of such features.

Multimedia content, however, does not allow such space exploration directly.
It is constrained to the color information of individual pixels at a rather small
resolution. Video content resolves this issue only partially with a motion of
the camera, which, on the other hand, introduces more degrees of freedom in
background modeling and increases its complexity.

Semi-supervised and Active Learning in Video Scene Classification
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2.1 Single Image Scene Classifiers Based on Colour Statistics

The early scene classifiers, including the Indoor/Outdoor problem [22,27], and
also the more recent approaches mentioned below are directly based on the
overall color information contained in the picture. The vital decision in this
particular case is the selection of color space and the granularity of the considered
histograms.

RGB (red, green and blue components) is the primary color space of mul-
timedia acquisition and processing. However, it does not directly encode the
quality of the color perceived by a human. By qualities of color, we primarily
mean the color shade (hue). In HSV encoding (hue, saturation and value of the
black/white range components, the last of them related to the overall lightness
of the color), hue is commonly sampled with finer precision (narrower bins in
histogram approaches) than saturation and lightness [5,8].

Mainly because of memory consumption and model size, statistical features
of the individual images are commonly used for image processing, including basic
scene classification. Other approaches are based on object detection [11,15], on
interest point description [3,2], or in recent years they use deep convolutional
neural networks [26,29,32].

2.2 Multi-label Extension

Often, a single image contains multiple semantic features – such as sea, beach
and mountains. A crisp classification into only one class would, however, have
to take only the dominant class, which might be different from the selection of
the annotator. A somewhat possible extension is to create a new crisp class for
each encountered combination of the labels, but this would have a substantial
impact in the areas where the amount of labeled content is not sufficient to
enable proper training on such sub-classes.

Another possibility is to organize the labels into a hierarchical structure. If
the described scenery shares multiple features, the parent label may be preferred
for content description. When the scene classifier detects only a specific part of
the scenery, we should not consider it a full miss.

Statistical approach One of common assumptions in scene classification is
that, during a single shot, the background will be visible for a more extended
period than the foreground object. Therefore, we may process each frame in a
single shot by a scene recognition algorithm and vote among the proposed labels.
The statistical approach to background modeling applies if we assume a static
camera shot. When such an assumption is met, all frames are perfectly aligned,
and the background model can be extracted from the long-term pixel averages.

2.3 Semi-supervised Learning and Active Learning

Semi-supervised learning (cf. the survey [33]) is a technique that benefits from
making use of easily obtainable unlabeled data for training. In this paper, we

Semi-supervised and Active Learning in Video Scene Classification
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mainly focus on the self-training aproach to semi-supervised learning [10]. It is a
simple and efficient method, in which we add samples with the most confidently
predicted labels (pseudo-labels) to the training dataset. This can be done so the
model is retrained in each iteration. Other aproaches to semi-supervised learning
are co-training [1] and multiview training [9] thath benefit from agreement among
multiple learners.

Active learning (cf. the survey [23]) is related to semi-supervised learning
through being also used in machine learning problems where obtaining unlabeled
data is cheap and manual labeling is expensive but possible. Its goal is to spend a
given annotation budget only on the most informative instances of the unlabeled
data. Most commonly, it is performed as pool-based sampling [14], assuming a
small set of labeled data and a large set of unlabeled data. Samples that were
found to be the most informative, are given to an annotator and are moved
into the labeled set. The considered machine learning model (e.g., a classifier)
is retrained and the algorithm iterates until the budget is exhausted or the
performeance of the model is satisfactory.

Pool based sampling needs to evaluate an utility function that estimates some
kind of usefulness of knowing the label of a particular sample. There are various
ways of defining the utility function: for example, as a measure of uncertainty
in uncertainty sampling [13], as a number of disagreements within an ensemble
of diverse models in a method called query-by-committee [25], as the expected
model change [24], the expected error [20] or only the variance part of the model
error [6].

Semi-supervised and active learning can be quite naturally combined since
they address unlabeled data set from opposite ends. For example, self-training
uses the most certain samples to be turned to labeled samples and uncertainty
sampling queries the most uncertain samples and obtains its label from an anno-
tator. Such a combination was used for various problems [16,21,31]. Successful
combinations with active learning exist also for multiview training [17,18,30].

3 Multimedia Histogram Processing with Feed-Forward
Neural Network using SVM

In the reported research, our main concern is to enable an automatic anno-
tation of small datasets with a generally small variation within the individual
classes. For example, we are not particularly interested in recognition of a broader
scenery concept (such as a living room), but we aim at the classification that
the video shot was captured in one specific living room.

One of the possible applications, on which we will demonstrate our approach
in the next section, is the classification of individual scenes in long-running shows
and sit-coms. However, our approach is designed to be versatile and enable,
for example, disambiguation of individual television news studios or well-known
sites.

Another concern of us is that the training of the classifier should require a
minimal amount of resources to enable connection into more complex systems

Semi-supervised and Active Learning in Video Scene Classification
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of multimedia content description as a simple high-level scene disambiguation
module.

Therefore, we revise the traditional approaches in scene classification and
propose the use of color histograms, possibly with partial spatial awareness. To
demonstrate our reasoning behind this step, we refer to Figure 1.

(a) Room 4A (b) Room 4B
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(c) Histogram comparison

Fig. 1: Representative frames from two distinct living rooms and comparison
of the proposed histograms. Although both of these pictures depict a living
room, the distribution of colours is different. Source images courtesy of CBS
Entertainment.

We choose a feed-forward neural network as the base classifier. In particular,
we use a network with two hidden layers of 100 and 50 neurons and logistic
sigmoid as activation function. The output layer uses the softmax activation
function. The network is trained using backpropagation with a negative log-
likelihood loss function and a stochastic gradient descent optimizer. The network
topology, activation function and optimizer were found through a simple grid
search, in which we considered also other the activation functions such as ReLU
or hyperboilic tangent, and another optimizer, based on an adaptive sestimates
of first and second moments of the gradients [?].

For the scene classification task, we can use the trained neural network di-
rectly. However, we introduce an improvement inspired by transfer learning.
Transfer learning is usually used in deep convolution neural nets where the con-
vergence of all parameters is slower [28]. However, we would like to demonstrate,
that the transfer learning can bring a substantial benefit also in shallow neu-
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6 Tomáš Šabata, Petr Pulc, Matin Holeňa

ral networks. Especially in combination with a support vector machine (SVM)
classifier.

In our scenario, we freeze the parameters of first layers and use the network
as a feature extractor. For the classification stage, the original softmax layer is
then replaced with a linear support vector machine. This brings us a rather small
but consistent improvement in the final accuracy.

For an overall structure of our proposed network, please refer to Figure 2.
In the figure, red arrows represent the first learning phase in which parameters
of the net are found using a backpropagation. Blue arrows represent the second
learning phase – transfer learning. In the second phase, the first two layers of the
already trained neural net are used for training dataset generation. After that,
a linear SVM classifier is trained. Green arrows represent the prediction of new
samples.

Data 
(InputDim)  

Linear Layer 
(InputDim x 100)  Sigmoid Linear Layer 

(100 x 50)  Sigmoid

Linear Layer 
(50 x outputDim)  

Softmax Negative log
likelihood loss

Linear SVM Trainer

SVM learning
Back propagation

Prediction 

Legend: 

Linear SVM 

Prediciton

Fig. 2: The architecture of the proposed neural net. Red arrows represent the
first learning phase; blue arrows represent a second learning phase with SVM
and green arrows represent the prediction phase.

Finally, the model performance was improved by using a combination SL+AL.
We have chosen a combination of uncertainty sampling with pseudo-labeling
through self-training. In the experimental evaluation, the utility functions least
uncertain (eq. 1), margin (eq. 2) and entropy (eq. 3) were included.

Semi-supervised and Active Learning in Video Scene Classification
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φLC(x) = Pθ(y
∗
1 |x), (1)

φM (x) = Pθ(y
∗
1 |x)− Pθ(y∗2 |x)), (2)

φE(x) = −
N∑

i

Pθ(yi|x)logPθ(yi|x), (3)

In each iteration, n samples with the lowest utility function were queried
to be annotated. At the same time, samples with the utility function higher
than a threshold were predicted using the current version of the model, and
these predictions were then used to train the next version of the model. Utility
functions were calculated from the output of softmax layer of the neural net.
The number of samples n was chosen to be 5 in each iteration. The threshold
value was tuned to keep the number of wrong labels getting into training data
as low as possible.

3.1 Weighted accuracy

The scene description in our experiment is constructed hierarchically so there
are three different levels of the label. The first level describes building name, the
second level describes a room, and the last level describes detail in the room. For
instance, if the camera shot captures the whole living room of the flat “4A” in
the “main” building, we use a label such as main.4a. If only a specific portion of
the room is shown, we use a more detail level of the label such as main.4a.couch.

To take into account the label hierarchy, we introduce weighted accuracy of
a classifier F predicting ŷ1, . . . , ŷn for training data (x1, y1), . . . , (xn, yn):

WA(F ) =
1

n

n∑

i=1

f(yi, ŷi),

f(yi, ŷi) =





1 if 1(yi = ŷi, 3)

0.5 if 1(yi = ŷi, 2)

0 otherwise.

,

where 1(yi = ŷi, k) is the truth function of equality of all components of yi and
ŷi on the k-th or a higher level of the component hierarchy.

4 Experimental evaluation

For the evaluation of all the following approaches, we prepared our dataset [19]
from the first series of a sit-com The Big Bang Theory. This particular show
uses only a couple of scenes and by 2018 new series are still being produced.
The dataset is chosen for the proof of concept experiment and new datasets
should follow in future experiments. The multimedia content was automatically

Semi-supervised and Active Learning in Video Scene Classification
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segmented into individual camera shots by PySceneDetect [4] using the content
detector.

A middle frame from the detected shot was stored as a reference for human
annotation and convolutional neural network processing. Due to the copyright
protection, these stored frames are not contained in the dataset. They were
divided into 80% training and 20% test data along the time axis.

For statistical approach experiments, the following histograms averaged by
the respective frame area and shot duration were obtained: RGB 8x8x8 (flat-
tened histogram over 8× 8× 8 bins), H (hue histogram with 180 bins), HSV (
concatenation of 180 bins H, 256 bins S and 256 bins V histograms) and HSV
20x4x4 2*2 (flattened histogram over 20 × 4 × 4 bins in each of 4 parts of the
frame introduced by its prior division in 2× 2 grid).

4.1 Combinations of histograms and classifiers

We have compared combinations of the above described histograms with the
following classifiers: linear SVM, k nearest neigbours (k-NN), naive Bayes (NB)
and the feedforward neural nets (FNNs) described in section 3, i.e., FNN alone
and FNN+SVM. A full comparison of the unweighted accuracy of all 16 combi-
nations is carried out in Table 1.

Table 1: Accuracy of combining the considered four kinds of histograms with
the following classifiers: linear SVM, k-NN, NB, FNN and FNN+SVM. For each
classifier, the highest accuracy with respect to the different kinds of histograms
is in italics, and the highest accuracy with respect to different classifiers is in
bold

Accuracy [%] Linear SVM k-NN NB FNN FNN+SVM

RGB 8x8x8 18.1 32.42 26.1 54.5 60.0
H 12.4 30.7 26.1 56.0 58.9

HSV 14.1 32.6 32.4 63.3 65.7
HSV 20x4x4 2*2 46.0 45.4 33.9 77.2 78.8

It is noticeable that HSV 20x4x4 2*2 feature dominates over all other vari-
ants. Therefore, we were using HSV 20x4x4 2*2 in the subsequent experiments.
On the other hand, adding an SVM as the last layer of the FNN brings only a
smaller improvement.

4.2 Comparison with an inception style neural network

State-of-the-art approaches in image scene classification usually use the residual
deep convolutional neural networks with inception-style layers. They are typi-
cally combinded with multi-scale processing of the input imagery.

Semi-supervised and Active Learning in Video Scene Classification
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With these key features in mind, we used the winner of the 2016 LSUN
challenge [29] as the reference method for scene classification on our dataset.

The results are, however, worse than expected. The accuracy progress (see
Figure 3) shows that the network training is very unstable. The testing accuracy
achieves a maximum of 32.4% in the 801st epoch.
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Evolution of the test-data accuracy of the 2016 LSUN winner during training

Fig. 3: Accuracy of the inception-style winner of the LSUN challenge [29] on the
testing set

As we are unable to interpret the inner state of the neural network directly,
we may only assume that the main issue with using the multi-resolution con-
volutional neural network is the small dataset size. However, this is exactly the
issue we need to mitigate.

4.3 Including supervised and active learning

As was shown in Subsection 4.1, the use of feed-forward neural network itself
brings a substantial increase in classification metrics. As Table 2 indicates, the
SVM layer provides an additional improvement as well as using part of the un-
labeled dataset with SL+AL. Although the improvement is not high, we believe
that using the more sophisticated combination of SL+AL could bring us even
further.

The initial labeled dataset contained 5315 samples. An unlabeled dataset
with 26528 samples was used for both active and semi-supervised learning. A
human annotator was asked five queries at each of ten iterations.

Semi-supervised and Active Learning in Video Scene Classification
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Table 2: Final achieved accuracy, weighted accuracy, precision, Recall and F1
score with the HSV 20x4x4 2*2 histogram. For each of these classifier perfor-
mance measures, the highest value among the considered classifiers is in bold

Acc Weighted acc Precision Recall F1

FNN 0.7723 0.8518 0.7813 0.7590 0.7578
FNN-SVM 0.7883 0.8626 0.8026 0.7837 0.7842

FNN-SVM with SL+AL 0.7895 0.8617 0.8037 0.8022 0.7978

5 Conclusions and Future Work

In this paper, we sketched how semi-supervised learning combined with active
learning can be applied to scene recognition In addition, we propose to use neural
networks for further feature enhancement.

The resulting features extracted from the proposed neural network provide
a substantial improvement over the engineered features on input. Especially, if
the extracted features are used as a data embedding for a linear SVM classifier.

This allows us to achieve an accuracy of almost 79% on a small dataset that
is significantly higher than reference method (32.4%).

Several descriptors are, however, still hard to recognize even for a human
annotator (e.g. staircase floor number). In these situations, one may benefit from
the context of the previous and following shot and consequently improve the
classification accuracy. Therefore, we would like to try context-based classifiers,
such as HMM, CRF or BI-LSTM-CRF as a next step of our research.

Last but not least, we would like to use transductive SVM in the top layer
of the final classifier and provide further experiments in the combination with
semi-supervised and active learning, primarily with active multiview training.
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Abstract. Active learning holds the promise of learning models from
the data with minimal expert input. However, it assumes that the expert
is always available or only at the beginning. We waive this assumption
and investigate to what extent active learning is effective in practice.
We focus on sentiment classification over real streams of opinions. We
show that at least for the two real streams we have analyzed, the random
strategy is very competitive, and querying the expert in an intelligent way
does not bring many advantages, at least when the expert is irregularly
available.

Keywords: active learning, oracle availablity, polarity model learning,
opinion stream mining

1 Introduction

The objective of active learning is to obtain better or comparable performance
to a fully supervised learner with fewer labels if the learner is given the oppor-
tunity to select the instances for which it requires labels [1]. Active learning is
thus very suitable in those scenarios where there is an abundance of unlabeled
data and obtaining new labels is rather expensive. Labels are obtained using an
oracle who can, for example, be a domain expert or a human annotator from
a crowd-sourcing platform. However, it is often assumed that there is a single
oracle that is always correct, always available and inexpensive to query. While
there are surveys [1], [2], and [3] and studies [4], [5] that provide insights to the
above mentioned challenges in active learning, only a few studies focus on the
availability of the oracle for streaming data [6].

In this paper, we consider a stream of opinionated documents and try to
predict the sentiment of the document as being either positive, negative or neu-
tral. Over time drift may be observed in the stream due to evolving topics, data
and vocabulary, requiring the classifier to adapt to the opinionated stream. For
this we use active learning to obtain new labels from the data stream. Instances
to be labeled by the oracle are sampled using an appropriate query strategy.
However, we assume that the oracle is available irregularly i.e. according to a
pattern unknown to the learner. This implies that the oracle may be queried
at each moment, but will respond by delivering the label only if it is available.
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Fig. 1. Interaction of the stream learner and an irregularly available oracle

If the oracle is unavailable, the instance is not used. This workflow is shown in
Figure 1.

The remaining of the paper is organized as follows. Section 2 discusses the
related work. In Section 3 we detail our framework and the active learning query
strategies used. Section 4 describes the setup for our experiments. While in
Section 5 we discuss the results of those experiments. We present our concluding
remarks in Section 6.

2 Related Work

Most of the algorithms for active learning on streams either assume infinite
verification latency, whereupon they invoke semi-supervised learning [7] or they
assume that the Oracle is always available to provide labels [8], [9], [10], [11],
[12].

Shickel and Rashidi in [6] propose a framework that is aware of the oracle’s
availability for data streams. Their framework considers multiple oracles and fo-
cuses on querying first those oracles that have a higher availability. They try to
achieve a cost-benefit tradeoff by using a dynamic labeling budget proportional
to the oracle’s availability with the cost of labeling an instance inversely pro-
portional to the oracle’s availability. However, such a cost-benefit tradeoff seems
unrealistic in real-world scenarios where the cost is likely to be regulated by the
difficulty in obtaining the label and other factors [5]. No experiments were con-
ducted with oracles of varying expertise, which is often seen in active learning
literature considering multiple oracles.

3 Active Learning on an Opinionated Stream

We consider a data stream D of opinionated documents observed at distinct
timepoints t0, t1, . . . , ti, . . . where at each timepoint ti we receive a batch of
documents. We define the timepoint on a temporal level where, for example, the
timepoint could be a week. Consequently, all the documents arriving during the
time period from ti−1 to ti would comprise the batch of documents for ti.

Active Stream Learning with an Oracle of Unknown Availability
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Our framework encompasses an algorithmic core described in Section 3.1 and
the query strategies in Section 3.2. We link this framework with a simulator of
the oracle’s availability, described in Section 4.1, and with an algorithm for the
preparation of the opinionated data stream, described in Section 4.2.

3.1 Modeling Oracle Unavailability during Querying

We consider the beginning of the stream at t0 to be characterized by the avail-
ability of an initial set of labeled documents L0. The initially labeled documents
L0 are used to initialize the classifier ∆. At subsequent timepoints i.e. t1 on-
wards, we receive unlabeled data Ut. If the budget B is not exceeded, for every
unlabeled document x, we use the trained classifier ∆ to predict the probability
P (ŷc|x) ∀c ∈ C, where c represents the sentiment of the document, namely, pos-
itive, negative or neutral. Our method calculates the confidence of the learner’s
prediction I using metric φ, and launches a request for the true label y when
necessary. The oracle provides the true label y only if it is available and the
document x is added to the labeled data for the next iteration. In the event that
the oracle is unavailable, x is not used to adapt the learner. An overview of our
framework is shown in Algorithm 1.

We assume the cost of labeling is the same for every document at any time
t. If nt is the number of queries sent to the oracle at t, then the utilized budget
at t is given by nt

|Ut|
< B (1)

To adapt to the evolving data stream, we utilize a sliding windowW [13]. At
every timepoint t, we add the labeled documents Lt to the window. Once the
window is full, the documents from the oldest timepoint within the window are
forgotten. Depending on the chosen classifier ∆, for every iteration, there may
be a need to retrain ∆ with the documents in the window.

Although the framework is capable of using any confidence metric such as
maximum posterior probability or the maximum margin between the first and
second most probable class, we propose calculating the confidence of a prediction
using entropy as,

φH = 1−
[
−
∑

c∈C
P (ŷc|x) log|C| P (ŷc|x)

]
(2)

3.2 Query Strategies

We use uncertainty based query strategies for the active learner. We also use the
variable uncertainty and variable randomized uncertainty strategies introduced
by Žliobaitė et al. in [9], [10] and [11]. The difference in our implementation is
that we have generalized the strategies to allow the use of any confidence metric
while determining if an instance needs to be sampled.

Random Strategy: This strategy randomly selects an instance to be labeled
by the oracle with a probability given by the budget B. In this sense, it is very
naive and is used as the baseline strategy.

Active Stream Learning with an Oracle of Unknown Availability
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Algorithm 1: Active Learning with an Irregularly Available Oracle

Input: ∆ - classifier with relevant parameters; size - window size; B - budget;
o - oracle; φ - confidence metric; queryStrategy - query strategy with
parameters;

Initialize: t← 0; W ← SlidingWindow(size)
1 Receive labeled data Lt
2 W ← addToWindow(Lt)
3 for t = 1, 2, . . . do
4 Train classifier ∆ with instances in W
5 Receive unlabeled data Ut
6 nt ← 0

Lt ← ∅
7 for each instance x ∈ Ut do
8 Pc ← P∆(ŷc|x) ∀c ∈ C // predict the probability

9 ŷ ← arg maxc(Pc) // predicted label

10 if (nt/ |Ut|) < B then
11 I ← φ(Pc) // compute the confidence

12 if queryStrategy(B, I, . . . ) = True then
13 nt ← nt + 1
14 if isAvailable(o) then
15 y ← get true label of x from the oracle o

Lt ← Lt ∪ (x, y)

16 W ← addToWindow(Lt)

Fixed Uncertainty Strategy: This strategy samples those instances which
the learner are least confident of by comparing the confidence of prediction of
an instance to a fixed threshold θ.

Variable Uncertainty Strategy: For a learner to adapt to an evolving
data stream, obtaining labels for the least confident instances within each time-
point would be more beneficial. The variable uncertainty strategy described in
Algorithm 2 provides a variable threshold that adjusts itself to the incoming
data stream. When the data stream speeds up, the confidence of the learner de-
creases. In such cases, it decreases its threshold so that least confident instances
are queried first. On the other hand, at times when the learner is confident of its
prediction, the threshold is increased to capture the most uncertain instances.

Algorithm 2: VariableUncertainty(I, s)

Input: I - confidence score; s ∈ (0, 1] - threshold adjustment step
Output: True if true label is required else False
Initialize: labeling threshold θ ← 1

1 if I < θ then
2 θ ← θ (1− s)// uncertain instance: decrease the threshold

3 return True

4 else
5 θ ← θ (1 + s)// confident instance: increase the threshold

6 return False

Active Stream Learning with an Oracle of Unknown Availability
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Variable Randomized Uncertainty Strategy: Uncertainty based active
learning query strategies generally focus on sampling those instances that are
close to the decision boundary of the learner. In evolving data streams changes
may occur anywhere in the instance space. So as to not miss the change that
may occur elsewhere, the variable randomized uncertainty strategy occasionally
samples those instances that the learner is confident of. As shown in Algorithm 3,
the threshold is multiplied by a normally distributed random variable to sample
the confident instances.

Algorithm 3: VariableRandomizedUncertainty(I, s, δ)
Input: I - confidence score; s ∈ (0, 1] - threshold adjustment step

δ - variance of threshold randomization
Output: True if true label is required else False
Initialize: labeling threshold θ ← 1

1 θrandomized ← θ × η, where η ∈ N (1, δ) is a random multiplier
2 if I < θrandomized then
3 θ ← θ (1− s)// uncertain instance: decrease the threshold

4 return True

5 else
6 θ ← θ (1 + s) // confident instance: increase the threshold

7 return False

4 Experiment Setup

The goal of our experiments is to study how the performance of the learner is
affected when the availability of the oracle changes. The following sub-sections
describe the oracle availability simulator, the datasets used, and the evaluation
criteria and strategy.

4.1 Simulator of Oracle Availability

At timepoint t, we consider the oracle to be available with a probability of αt. In
our experiments, at any timepoint t, we set the oracle’s availability αt = α and
is considered to be independent of the availability at t−1. Algorithm 4 provides
a more formal definition of our simulator.

Algorithm 4: Oracle Availability Simulator

Input: α ∈ (0, 1] - availability of the oracle;
Output: True if the oracle is available else False

1 return uniform(0, 1) ≤ α

4.2 Datasets and Feature Engineering

Yelp: The Yelp Dataset 1 contains about 5.2 million reviews of various businesses
over a period of 13 years from 11 metropolitan areas across 4 countries. We

1 https://www.yelp.com/dataset/challenge
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filtered the dataset for English reviews and additionally removed those reviews
whose length was less than 15 words. For our data stream, we considered the
reviews from 2009 onwards.

Amazon: The Amazon dataset introduced in [14], contains reviews of sev-
eral product categories. Using the 5-core datasets of the product categories, we
build a dataset with an intention of introducing concept drift. For this pur-
pose, we randomly selected three product categories every three months from
among the following nine categories: Home and Kitchen, Kindle Store, Health
and Personal Care, Cell Phones and Accessories, Apps for Android, Electron-
ics, Clothing, Shoes and Jewelry, CDs and Vinyl, and Beauty. We removed the
duplicate reviews arising from the product having multiple categories.

Both the Yelp and Amazon employ a 5-star rating scheme, where 5-stars is
the highest rating while 1-star is the lowest. We considered the 1 and 2-star
rating to be negative, 3-star rating neutral and 4 and 5-star rating positive.

Feature Engineering: We preprocessed the reviews by replacing URLs,
negations and currencies with the tokens URL, NEGATION and CURRENCY
respectively and some emoticons with tokens like SMILE and HEART. We fur-
ther suppressed repeated letters, expanded contractions (e.g. ”I’m” into ”I am”),
removed stopwords and replaced words by their lemmas.

After preprocessing, we extracted features from the reviews using word n-
grams with n = 3 along with its corresponding frequency of occurrence. We
selected the most relevant 15000 features using the chi-square test. Our feature
vectors were then constructed using the TF-IDF weighting scheme.2

4.3 Evaluation Strategy and Evaluation Criteria

We define the duration of a timepoint to be a week and maintain a sliding
window of five weeks. We perform prequential evaluation [13]: we first test on
all documents for the incoming week and then adapt by using only the sampled
documents whose labels have been provided by the oracle.

As we use entropy to calculate our confidence measure, we evaluate on log
loss decrease [2]. The log loss lt at timepoint t is given by,

lt = − 1

|Ut|
∑

i∈Ut

∑

j∈C
bij log pij (3)

where bij is a binary indicator of whether or not label j is the correct classification
for instance i, and pij is the model probability of assigning label j to instance i.

5 Experimental Evaluation

As the Stochastic Gradient Descent classifier was found to be effective for sen-
timent analysis in [15], we used the same with hinge loss, l2 penalty and alpha
value of 0.0001 to optimize the objective function of a linear support vector ma-
chine as our base learner. The base learner was calibrated using Platt Scaling to
obtain probabilistic outputs.

2 Code and supplementary material available at https://github.com/elrasp/osm
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For each timepoint t, we set a fixed budget B = 0.1. For the query strategies,
we set the fixed threshold θ = 0.9, and the suggested values of 0.01 and 1 for
the threshold adjustment step s and the variance of the normally distributed
random number generator δ respectively [11].

In Section 5.1, we describe the underlying class distribution of the data
stream for these datasets and in Section 5.2, we analyze the influence of the
oracle’s availability on the performance of the learner.

5.1 Distribution of Data

The weekly underlying class distribution of data in the stream of opinionated
documents for the Yelp and Amazon datasets are shown in Figure 3(a) and
Figure 3(b) respectively.

Yelp: For the Yelp dataset, we observe a gradual increase in the number of
reviews obtained over time. The proportion of neutral reviews received remain
almost constant for the entire data stream. In comparison, the positive and
negative reviews are always increasing. Also, we find that the positive reviews
dominate the class distribution accounting for more than 50% of the reviews in
any week.

Amazon: Unlike the Yelp dataset, the amazon dataset exhibits sudden
bursts in the volume of reviews received. This occurs as some chosen prod-
uct categories are more popular than others and receive more reviews. We also
observe that mostly there is a burst in the positive reviews received as compared
to the negative and neutral reviews. Similar to the Yelp dataset, the positive
reviews dominate the class distribution.

5.2 Impact of the Oracle’s Availability on Learning

Figure 2 shows how the oracle availability, simulated by the method of Sec-
tion 4.1, affects the number of queries answered. We vary the availability be-
tween 1.0 (all queries answered) and 0.1 (only 10% of the queries per batch are
answered) in steps of 0.1.
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(b) Amazon Dataset: Queries answered by the Oracle
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Fig. 2. Queries answered by the Oracle for varying availabilities
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In Figure 3 we show the results of evaluation for the Yelp (on the left) and
Amazon (on the right) datasets. We aggregated the log loss results for all the
timepoints every two months and plot the mean (lines) and standard deviation
(colored area around the line). For the Yelp dataset, in general, we observe that
the error in performance gradually reduces as the stream progresses irrespective
of the oracles availability and the query strategy used. On the other hand, the
learner finds it much more difficult to adapt to the evolving data stream of the
Amazon dataset.

In the early stages of the stream, where the data volume in the stream is low,
we observe the learner performing better for lower oracle availabilities. As more
and more data is accumulated, the need to have the oracle for the Yelp dataset
drops but remains for the Amazon dataset as it exhibits more drift.

We further conducted experiments with oracle availabilities varying between
0.01 and 0.1 in steps of 0.01 and compared the different query strategies at vary-
ing availabilities with the non-parametric Friedman’s test followed by Nemenyi
post-hoc [16]. Friedman’s test proceeds by ranking the models under considera-
tion. The best performing model is given the rank 1, the second best 2 and so
on. If two or more models have identical performance they are given an average
rank. The null hypothesis of Friedman’s test states that all the models perform
the same and thus, will have the same average rank. If the test rejects the null
hypothesis, we proceed with the Nemenyi post-hoc test that makes pair-wise
comparisons of the different models. It identifies statistically significant models
if the difference between their average rank is more than the critical distance.

Figure 4(a) and Figure 4(b) shows the critical distance diagram of the Yelp
and Amazon dataset respectively. In these diagrams the better performing mod-
els are ranked higher and are placed to the right. The model name corresponds
to a combination of the query strategy and the value of the oracle availability,
whereupon ”rand” in the name refers to the random strategy. The models whose
difference in average rank is less than the calculated critical distance (CD) are
connected to each other by a horizontal line, indicating that these models are
statistically indifferent to each other.

As we can see in these figures, there are strategies that which perform signif-
icantly better when the oracle availability changes. At very low oracle availabil-
ities we find that there is no strategy that performs significantly better than the
others. For the Amazon dataset, even at higher oracle availabilities there is no
difference in the performance of the strategies. This could mainly be attributed
to the nature of the drift exhibited in both the datasets.

6 Conclusions

The need for an oracle depends on the overall variability of the dataset. If there
is convergence over time as in the case of the Yelp dataset, the need for an
oracle is limited, because the learner can predict the labels by itself. Hence, low
availability of the oracle is only relevant if there is drift.
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(d) Amazon Dataset: Random Strategy
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(e) Yelp Dataset: Fixed Uncertainty Strategy
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(f) Amazon Dataset: Fixed Uncertainty Strategy
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(g) Yelp Dataset: Variable Uncertainty Strategy
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(h) Amazon Dataset: Variable Uncertainty Strategy
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(i) Yelp Dataset: Variable Randomized Uncertainty Strategy
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(j) Amazon Dataset: Variable Randomized Uncertainty Strategy
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Fig. 3. Evaluation results of the Yelp (on the left) and Amazon (on the right) datasets
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Fig. 4. Critical Distance Diagram. The models can be identified by the query strategy
and oracle availability. The best performing models are shown to the right and models
that are not statistically different to each other are connected by the horizontal line.

If an oracle is available, the random strategy is a good choice, as it shows the
same tendency as the other strategies, is easy to implement and is fast. However,
more experiments are needed to check whether stronger active learning strategies
can beat the random sampler in this setting, by capitalizing more effectively on
the few available labels. Experiments are also required for different domains.

To improve model quality, we intend to consider more elaborate querying
strategies [17], and to investigate whether instance-based active learning might
deliver better results than the block-based active learning paradigm we currently
use.

To compensate for oracle inavailability, we also intend to combine active
learning with semi-supervised learning. Semi-supervised methods are used to
propagate labels to the arriving instances, cf. [18], [19]. In that case, we want to
investigate how disagreement between oracle and self-learner can be alleviated
in a seamless way.
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Abstract. We present an active meta learning approach to model selec-
tion or algorithm recommendation. We adopt the point of view “collab-
orative filtering” recommender systems in which the problem is brought
back to a missing data problem: given a sparsely populated matrix of
performances of algorithms on given tasks, predict missing performances;
more particularly, predict which algorithm will perform best on a new
dataset (empty row). In this work, we propose and study an active learn-
ing version of the recommender algorithm CofiRank algorithm and com-
pare it with baseline methods. Our benchmark involves three real-world
datasets (from StatLog, OpenML, and AutoML) and artificial data. Our
results indicate that CofiRank rapidly finds well performing algorithms
on new datasets at reasonable computational cost.

Keywords: Model Selection · Recommender · Active Meta Learning.

1 Introduction

While Machine Learning and Artificial Intelligence are taking momentum in
many application areas ranging from computer vision to chat bots, selecting the
best algorithm applicable to a novel task still requires human intelligence. The
field of AutoML (Automatic Machine Learning), aiming at automatically select-
ing best suited algorithms and hyper-parameters for a given task, is currently
drawing a lot of attention. Progress in AutoML has been stimulated by the orga-
nization of challenges such as the AutoML challenge series1. Among the winning
AutoML approaches are AutoWeka and Auto-SkLearn, developed by the
Freiburg team [6,5,7] (more in Section 2). These approaches, taking inspiration
from Bayesian optimization [4], alternatively learn an inexpensive estimate of
model performance on the current dataset, and use this estimate to reduce the
number of model candidates to be trained and tested using the usual expensive
cross-validation procedure. A novel ingredient of AutoSkLearn, referred to as
“meta-learning”, takes in charge the initialization of the Bayesian optimization
process, with a predictor using “meta-features” describing the datasets. Meta-
learning reportedly yields significant improvements over random initializations.

1 http://automl.chalearn.org
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Another approach targeting AutoML is based on recommender systems (RS),
popularized by the Netflix challenge [2]. RS approaches seek the item best suited
to a given user, based on historical user-item interactions and user preferences.
By analogy [15] proposed first to treat algorithm selection as a recommender
problem in which datasets “prefer” algorithms solving their task with better
performance. Along this line, the “Algorithm Recommender System” Alors [9],
combines a recommender system and an estimate of model performance based
on predefined meta-features, to achieve AutoML (more in Section 2).

In this paper, we propose an active meta-learning approach inspired by Au-
toSklearn and Alors. Formally (Section 3), given a matrix of historical algo-
rithm performance on datasets, we aim at finding as fast as possible the model
with best performance on a new dataset. The originality compared to the for-
mer approaches lies in the coupled search for the meta-features describing the
dataset, the model performance based on these meta-features, and the selection
of a candidate model to be trained and tested on the dataset.

This paper is organized as follows: After briefly reviewing the SOTA in Sec-
tion 2, we formalize our problem setting in Section 3. We then describe the
benchmark data in Section 4 and provide an empirical validation of the ap-
proach in Section 5. While the validation considers only the “classical” machine
learning settings, it must be emphasized that the proposed approach does not
preclude of any type of tasks or algorithms, hence is applicable to a broader
range of problems.

2 State of the art

It is notorious that the success of model search techniques can be dramatically
improved by a careful initialization. In AutoSkLearn, the search is improved
by a sophisticated initialization using a form of transfer learning [10] called
“meta-learning”. The meta-data samples include all the datasets of openml.org
[12] (a platform which allows to systematically run algorithms on datasets).
Systematically launching AutoSkLearn on each dataset yields the best (or
near best) models associated with each dataset.

Independently, each dataset is described using so-called meta-features. Meta-
features are generally of two kinds: i) simple statistics of the dataset such as
number of training examples, number of features, fraction of missing values,
presence of categorical variables, etc.; ii) performance on the current dataset
of “landmark algorithms”, namely a well-chosen set of algorithms that can be
trained and tested with moderate computational effort such as one nearest neigh-
bor (1NN) or decision trees.

When considering a new dataset, AutoSkLearn first determines its nearest
neighbors in the meta-feature space, and initializes the search using the best
models associated with these neighbors. Other meta-learning formalisms, not
considered further in this paper, are based on learning an estimate of the model
performance from meta-features [11], or learning to predict the best performing
algorithm, as a multi-class classification problem [17].
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The delicate issue is to control the cost of the initialization step: considering
many landmark algorithms comes with an expected benefit (a better initial-
ization of the search), and with a cost (the computational cost of running the
landmarks).

As said, recommender systems (RS) aim at selecting the item best suited to
a particular user, given a community of users, a set of items and some historical
data of past interactions of the users with the items, referred to as “collaborative
matrix” [16,3], denoted S (for “score”) in this paper. As first noted by [15], algo-
rithm selection can be formalized as a recommender problem, by considering that
a dataset “likes better” the algorithms with best performances on this dataset.
Along this line, one proceeds by i) estimating all algorithm performances on this
dataset (without actually evaluating them by training and testing); and ii) rec-
ommending the algorithm(s) with best estimated performance on this dataset.

The merits of RS approaches regarding algorithm selection are twofold. Firstly,
RS approaches are frugal (like other methods, e.g. co-clustering). RS pro-
ceeds by estimating the value associated with each (user, item) pair − here, the
performance associated with each (algorithm, dataset) − from a tiny fraction of
the (user, item) ratings, under the assumption that the collaborative matrix is of
low rank k. More precisely the (usually sparse) matrix S of dimensions (p,N) is
approximated by UV ′, with U a (p, k) matrix and V a (N, k) matrix, such that
〈Ui,·, Vj,·〉 is close to Si,j for all pairs i, j (e.g. using maximum margin matrix
factorization in [14]). U (respectively V ) is referred to as latent representation
of the users (resp. the items). In the model selection context, RS approaches are
thus frugal: they can operate even when the performance of a model on a dataset
is known on a tiny fraction of the (model, dataset) pairs. Secondly, most-recent
RS approaches are ranking methods. Estimating algorithm performance is
a harder problem than ranking them in order of merit. A second benefit of RS is
that they can rank items conditionally to a given user. The CofiRank algorithm
[18] accordingly considers the rank matrix (replacing Si,j with the rank of item
j among all items user i has rated) and minimizes the Normalized Discounted
Cumulative Gain (NDCG) in which correctness in higher ranked items is more
important. As optimizing NDCG is non-convex, CofiRank thus instead optimizes
a convex upper-bound of NDCG.

In counterpart for these merits, mainstream RS is not directly applicable to
AutoML, as it focuses on recommending items to known users (warm-start rec-
ommendation). Quite the contrary, AutoML is concerned with recommending
items (models) to new users (new datasets), a problem referred to as cold-start
recommendation [13,8]. This drawback is addressed in the general purpose Alors
system [9], where external meta-features are used to estimate the latent repre-
sentation Û· of the current dataset; this estimated latent representation is used
together with the latent representation of any model to estimate the model per-
formance (as 〈Û·, Vj〉) and select the model with best estimated performance.
The novel active meta-learning approach presented in this paper proposes a dif-
ferent approach to warm start, not requiring external meta-features: Previously
evaluated algorithm scores are themselves used as meta-features (see Section 3).
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3 Problem setting and algorithms

We define the active meta-learning problem in a collaborative filtering
recommender setting as follows:
GIVEN:
– An ensemble of datasets (or tasks) D of elements d (not necessarily finite);
– A finite ensemble of n algorithms (or machine learning models) A of ele-

ments aj , j = 1, · · · , N ;
– A scoring program S(d, a) calculating the performance (score) of algo-

rithm a on dataset d (e.g. by cross-validation). Without loss of generality we
will assume that the larger S(d, a), the better. The evaluation of S(d, a)
can be computationally expensive, hence we want to limit the number of
times S is invoked.

– A training matrix S, consisting of p lines (corresponding to example datasets
di, i = 1, · · · p drawn from D) and n columns (corresponding to all algorithms
in A), whose elements are calculated as Sij = S(di, aj), but may contain
missing values (denoted as NaN).

– A new test dataset dt ∈ D, NOT part of training matrix S. This setting
can easily be generalized to test matrices with more than one line.

GOAL: Find “as quickly as possible” j∗ = argmaxj(S(dt, aj)).

For the purpose of this paper “as quickly as possible” shall mean by eval-
uating as few values of S(dt, aj), j = 1, · · · , n as possible. More generally, it
could mean minimizing the total computational time, if there is a variance in
execution time of S(dt, aj) depending on datasets and algorithms. However, be-
cause we rely in our experimental section on archival data without information
of execution time, we reserve this refinement for future studies. Additionally, we
assume that the computational cost of our meta-learning algorithm (excluding
the evaluations of S) is negligible compared to the evaluations of S, which has
been verified in practice.

In our setting, we reach our goal iteratively, in an Active Meta Learn-
ing manner (ActivMetaL), see Algorithm 1. The variants that we compare
differ in the choices of InitializationScheme(S) and SelectNext(S, t), as
described in Algorithms 2-5: Given a new dataset (an empty line), we need to
initialize it with one or more algorithm performances, this initialization is done
by InitializationScheme(S) and is indispensable to fire CofiRank. Algorithms
2-5 show 2 initialization methods: randperm in Algorithm 2 (the first algorithm
is selected at random) and median in Algorithms 3-5 (the algorithms are sorted
by their median over all datasets in training matrix S and the one with highest
median is selected as the first algorithm to evaluate). Once we have evaluated
the first algorithm, the next algorithms can be chosen with or without active
learning, this is done by SelectNext(S, t): Algorithm 2-3 without active meta
learning select next algorithms at random or according to median over training
datasets, i.e. the knowledge from evaluated algorithms on the new dataset is not
taken into account; Algorithm 4-5 run CofiRank for active meta learning, which,
initialized with performances of evaluated algorithm, returns a ranking of algo-
rithms on the new dataset. The difference is that in Alg. 4 we run CofiRank for
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each selection of next algorithm, i.e. CofiRank is initialized with more and more
known values. In Alg. 5 CofiRank is run only once at the beginning, initialized
with 3 landmark values.

Algorithm 1 ActivMetaL

1: procedure ActivMetaL(A, S, S, dt, nmax)
2: n← size(S, 2) . Number of algorithms to be evaluated on dt
3: t← NaNvector(n) . Algorithm scores on dt are initialized w. missing values
4: j+ ←InitializationScheme(S) . Initial algorithm aj+ ∈ A is selected
5: while n < nmax do
6: t[j+]← S(dt, aj+) . Complete t w. one more prediction score of aj+ on dt
7: j+ = SelectNext(S, t)
8: n←length(notNaN(t)) . number of algorithms evaluated on dt

9: return j+

Algorithm 2 Random

1: procedure InitializationScheme(S)
2: r←randperm(size(S, 2)) . Replaced by something more clever elsewhere
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: r←randperm(size(S, 2)) . Replaced by something more clever elsewhere
7: r(evaluated)← −Inf
8: return j+ ← argmax(r)

Algorithm 3 SimpleRankMedian

1: procedure InitializationScheme(S)
2: r←median(S, 2) . Column-wise median
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: r←median(S, 2) . Column-wise median
7: r(evaluated)← −Inf
8: return j+ ← argmax(r)

Algorithm 4 ActiveMetaLearningCofiRank

1: procedure InitializationScheme(S)
2: r←median(S, 2) . Column-wise median
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: r← CofiRank(S,t) . Collaborative filtering on [S; t] returning last line
7: r(evaluated)← −Inf
8: return j+ ← argmax(r)
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Algorithm 5 MedianLandmarks1CofiRank

1: procedure InitializationScheme(S)
2: r←median(S, 2) . Column-wise median
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: if length(evaluated) < num landmarks then
7: r←median(S, 2) . Column-wise median
8: else if length(evaluated) == num landmarks then
9: static r← CofiRank(S,t) . Keep the CofiRank predictions thereafter

10: r(evaluated)← −Inf
11: return j+ ← argmax(r)

4 Benchmark data

To benchmark our proposed method, we gathered datasets from various sources
(Table 1). Each dataset consists of a matrix S of performances of algorithms
(or models) on tasks (or datasets). Datasets are in lines and algorithms in
columns. The performances were evaluated with a single training/test split or by
cross-validation. The tasks were classification or regression tasks and the metrics
quasi-homogeneous for each S matrix (e.g. Balanced Accuracy a.k.a. BAC for
classification and R2 for regression). We excluded data sources for which metrics
were heterogeneous (a harder problem that we are leaving for further studies).
Although ActivMetaL lends itself to using sparse matrices S (with a large
fraction of missing values), these benchmarks include only full matrices S.

The artificial dataset was constructed from a matrix factorization to create
a simple benchmark we understand well, allowing to easily vary the problem
difficulty. Matrix S is simply obtained as a product of three matrices UΣV , U
and V being orthogonal matrices and Σ a diagonal matrix of “singular values”,
whose spectrum was chosen to be exponentially decreasing, withΣii = exp(−βi),
β = 100 in our experiments. The other benchmarks were gathered from the
Internet or the literature and represent the performances of real algorithms on
real datasets. We brought back all metrics to scores that are “the larger the
better”. In one instance (StatLog), we took the square root of the performances
to equalize the distribution of scores (avoid a very long distribution tail). For
AutoML, many algorithms were aborted due to execution time constraints. We
set the corresponding performance to 0. To facilitate score comparisons between
benchmark datasets, all S matrices were globally standardized (i.e. we subtracted
the global mean and divided by the global standard deviation). This scaling does
not affect the results.

We conducted various exploratory data analyses on the benchmark data ma-
trices, including two-way hierarchical clustering, to visualize whether there were
enough similarities between lines and columns to perform meta-learning. See our
supplemental material referenced at the end of this paper.
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Table 1: Statistics of benchmark datasets used. #Datasets=number of datasets,
#Algo=number of algorithms, Rank=rank of the performance matrix.

Artificial Statlog OpenML AutoML

#Dataset 50 21 76 30

#Algo 20 24 292 17

Rank 20 21 76 17

Metric None Error rate Accuracy BAC or R2

Preprocessing None Take square
root

None Scores for
aborted algo.
set to 0

Source Generated by
authors

Statlog Dataset
in UCI database

Alors [9]
website

AutoML1
(2015-2016)

5 Results

Table 2: Results of meta-learning methods for all 4 meta-datasets. Perfor-
mances of meta-learning algorithms are measured as the area under the meta learn-
ing curve (AUMLC) normalized by the area of the best achievable curve. Active Meta
Learning w. CofiRank (our proposed method) performs always best, although not sig-

nificantly considering the 1-sigma error bars of the leave-one-dataset-out procedure.

Artificial Statlog OpenML AutoML

Active Meta
Learning w.

CofiRank

0.91 (±0.03) 0.802 (±0.117) 0.96 (±0.04) 0.84 (±0.11)

Random 0.81 (±0.05) 0.77 (±0.05) 0.95 (±0.03) 0.79 (±0.07)

SimpleRank w.
median

0.7 (±0.2) 0.798 (±0.102) 0.95 (±0.04) 0.82 (±0.12)

Median
LandMarks w.

1-CofiRank

0.88 (±0.04) 0.795 (±0.099) 0.92 (±0.08) 0.83 (±0.11)

In this section, we analyze the experimental results of Table 2 and Figure 1.
The graphs represent meta-learning curves, that is the performance of the best
algorithm found so far as a function of the number of algorithms tried.2 The
ground truth of algorithm performance is provided by the values of the bench-
mark matrices (see Section 4).

We remind the reader that in a meta-learning problem, each sample is a
dataset. To evaluate meta-learning we use the equivalent of a leave-one-out esti-
mator, i.e. leave-one-dataset-out. Hence, we use as meta-learning training data

2 In the future, when we have meta-learning datasets for which the computational
run time of algorithms is recorded, we shall tackle the harder and more interesting
problem of meta-learning performance as a function of “total” computational time
rather than number of algorithms tried.
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all datasets but one, then create the learning curve for the left-out dataset.
Thus, given a benchmark data matrix, we generate meta-learning curves using
as matrix S a sub-matrix with one line left out (held out), which serves as tar-
get vector t for the dataset tested. Subsequently, we average all meta-learning
curves, step-by-step. Thus the result shown in Figure 1 are the averaged learn-
ing curves obtained with the leave-one-dataset-out scheme, i.e. averaged over all
datasets, for a given benchmark dataset.

To evaluate the significance of the efficiency of our proposed method, we
ran 1000 times the Random search algorithm, in which algorithms are ran in
a random sequence. We drew the curves of median performance (blue curves)
and showed as blue shadings various quantiles. The fact that the red curves,
corresponding to the proposed algorithm Active Meta Learning w. CofiRank is
generally above the blue curve comforts us that the method is actually effective.
It is not always significantly better than the median of Random search. However,
this is a very hard benchmark to beat. Indeed, the median of Random search is
not a practical method, it is the average behavior of random search over many
runs. Thus, performing at least as good as the median of Random search is
actually pretty good.

We also compared our method with two other baselines. (1) The SimpleRank
w. median (green curves) uses the median performance of algorithms on all but
the left-out dataset. Thus it does not perform any active meta-learning. (2) The
Median Landmark w. 1 CofiRank (pink curves) makes only one call of CofiRank
to reduce computational expense, based on the performance of only 3 Landmark
algorithms, here simply picked based on median ranking.

The first benchmark using artificial data (Figure 1(a)) a relative position of
curves that we intuitively expected: SimpleRankw.median (in green) does not
perform well and Active Meta Learning w. CofiRank (in red) is way up in the
upper quantiles of the random distribution, close to the ideal curve that goes
straight up at the first time step (selects right away the best algorithm). Median
Landmark w. 1 CofiRank (in pink) quickly catches up with the red curve: this
is promising and shows that few calls to CofiRank might be needed, should this
become a computational bottleneck.

However, the analysis of the results on real data reveals a variety of regimes.
The first benchmark using the datasets of the AutoML challenge (Figure 1(b))
gives results rather similar to artificial data in which Active Meta Learning
w. CofiRank still dominates, though SimpleRank w. median performs surpris-
ingly well. More surprisingly, Active Meta Learning w. CofiRank does not beat
SimpleRank w. median on the StatLog benchmark and beats it with difficulty (af-
ter more than 10% of the algorithms have been trained/tested) on the OpenML
benchmark. Also, the cheap algorithm calling CofiRank just once (Median Landmark
w. 1 CofiRank, performing no active learning) which looked promising on other
benchmark datasets, performs poorly on the OpenML dataset. This is unfortu-
nate since this is the largest dataset, on which running active-learning is most
computationally costly. We provide a discussion of computational considerations
in Section 6.
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Table 2 sums up the results in terms of area under the meta-learning curves
(AUMLC). Active Meta Learning w. CofiRank consistently outperforms other
methods, although not significantly according to the error bars.

6 Discussion and conclusion

We have presented an approach to algorithm recommendation (or model selec-
tion) based on meta-learning, capitalizing on previous runs of algorithms on a
variety of datasets to rank candidate algorithms and rapidly find which one will
perform best on a new dataset. The originality of the paper lies in its active
learning approach based on a collaborative-filtering algorithm: CofiRank. Col-
laborative filtering is a technique to fill in missing data in a collaborative matrix
of scores, which in our case represents performances of algorithms on datasets.
Starting from the evaluation of a single algorithm on a new dataset of interest,
the CofiRank method ranks all remaining algorithms by completing the missing
scores in the collaborative matrix for that new dataset. The next most promising
algorithm is then evaluated and the corresponding score added to the collabora-
tive matrix. The process is iterated until all missing scores are filled in, by trying
all algorithms, or until the allotted time is exhausted.

We demonstrated that Active Meta Learning w. CofiRank performs well on
a variety of benchmark datasets. Active Meta Learning w. CofiRank does not
always beat the naive SimpleRank w. median baseline method, but it consistently
outperforms the “hard-to-beat” median of Random ranking, while SimpleRank
w. median does not.

We also investigated whether the (meta-) active learning aspect is essential or
can be replaced by running CofiRank a single time after filling in a few scores for
Landmark algorithms. This technique (called Median Landmark w. 1 CofiRank)
seemed promising on the smallest benchmark datasets, but gives significantly
worse results that Active Meta Learning w. CofiRank on the largest benchmark
dataset on which it would help most (computationally). One avenue of future
research would be to put more effort in the selection of better Landmarks.

Further work also includes accounting for the computational expense of model
search in a more refined way. In this work, we neglected the cost of performing
meta-learning compared to training and testing the algorithms. This is justified
by the fact that their run time is a function of the volume of training data,
which is considerably smaller for the collaborative matrix (of dimension usually
' 100 datasets times ' 100 algorithms) compared to modern-times “big data”
datasets (tens of thousands of samples times thousands of features). However,
as we acquire larger meta learning datasets, this cost may become significant.
Secondly, we assumed that all algorithms had a comparable computational time
(to be able to use meta-learning datasets for which this information was not
recorded). In the future, we would like to take into account the duration of each
algorithm to better trade-off accuracy and computation. It is also worth noting
that ActivMetaL does not optimize the exploration/exploitation trade-off. It is
more geared toward exploitation than exploration since the next best algorithm
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(a) Artificial data. (b) AutoML data.

(c) StatLog data. (d) OpenML data.

Fig. 1: Meta-learning curves. We show results of 4 methods on 4 meta-learning
datasets, using the leave-one-dataset-out estimator. The learning curves represent per-
formance of the best model trained/tested do far, as a function of the number of models
tried. The curves have been averaged over all datasets held-out. The method Active
Meta Learning w. CofiRank (red curve) generally dominates other methods. It always
performs at least as well as the median of random model selection (blue curve), a
hard-to-beat benchmark. The more computationally economical Median Landmark w.
1 CofiRank consisting in training/testing only 3 models (Landmarks) to rank methods
using only 1 call to CofiRank (pink curve) generally performs well, except on OpenML
data for which it would be most interesting to use it, since this is the largest meta learn-
ing datasets. Thus active learning cannot easily be replaced by the use of Landmarks,
lest more work is put into Landmark selection. The method SimpleRank w. median that
ranks algorithm with their median performance (green curve) is surprisingly a strong
contender to Active Meta Learning w. CofiRank for the StatLog and OpenML datasets,
which are cases in which algorithms perform similarly on all datasets.
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is chosen at every step. Further work may include incorporating monitoring the
exploration/exploitation trade-off. In particular, as said, so far we have not taken
into account the computational cost of running algorithms. When we have a total
time budget to respect, exploring first using faster algorithms then selecting
slower (but better) algorithms may be a strategy that ActivMetal could adopt
(thus privileging first exploration, then exploitation).

At last, the experiments performed in this paper assumed that, except to the
new dataset being tested, there were no other missing values in the collaborative
matrix. One of the advantages of collaborative filtering techniques is that they
can handle matrices sparsely populated. This deserves further investigation.

Supplemental material, data and code

For full reproducibility of our results, datasets and code are available on Github.
To run it, CofiRank must be installed. We recommend using the Docker [1]
image we built for this purpose. Please refer to the Github repository for all
instructions. Our repository also includes a Jupyter-notebook with additional
graphs referred to in the text.

References

1. Docker. https://www.docker.com/

2. Bennett, J., Lanning, S., Netflix: The Netflix prize. KDD Cup and Workshop in
conjunction with ACM SIGKDD p. 201–206 (2007)

3. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems sur-
vey. Knowledge-Based Systems 46, 109–132 (2013)

4. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-
Brown, K.: Towards an empirical foundation for assessing bayesian optimization
of hyperparameters. In: NIPS workshop on Bayesian Optimization in Theory and
Practice (2013)

5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Proceedings of the Neu-
ral Information Processing Systems, pp. 2962–2970 (2015), https://github.com/
automl/auto-sklearn

6. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Methods for improving bayesian optimization for automl. In: Proceedings of the
International Conference on Machine Learning 2015, Workshop on Automatic Ma-
chine Learning (2015)

7. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter op-
timization via meta-learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence. pp. 1128–1135 (2015)

8. Gunawardana, A., Meek, C.: Tied boltzmann machines for cold start recommen-
dations. In: Proceedings of the 2008 ACM conference on Recommender systems.
pp. 19–26. ACM (2008)

9. Mısır, M., Sebag, M.: Alors: An algorithm recommender system. Artificial Intelli-
gence 244, 291–314 (2017)

ActivMetal: Algorithm Recommendation with Active Meta Learning

58



12 L. Sun-Hosoya, I. Guyon et M. Sebag

10. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22(10), 1345–1359 (2010)

11. Rice, J.: The algorithm selection problem. Advances in computers 15, 65–118
(1976)

12. van Rijn, J., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., Winter,
P., Wiswedel, B., Berthold, M., Vanschoren, J.: OpenML: A collaborative science
platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) Proceed-
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Abstract. Being able to extract targeted topics from text can be a
useful tool for understanding the large amount of textual data that exists
in various domains. Many methods have surfaced for building frameworks
that can successfully extract this topic data. However, it is often the case
that a large number of training samples must be labeled properly, which
requires both time and domain knowledge. This paper introduces new
alignment-based methods for predicting topics within textual data that
minimizes the dependence upon a large, properly-labeled training set.
Leveraging Word2Vec word embeddings trained using unlabeled data
in a semi-supervised approach, we are able to reduce the amount of
labeled data necessary during the text annotation process. This allows
for higher prediction levels to be attained in a more time-efficient manner
with a smaller sample size. Our method is evaluated on both a publicly
available Twitter sentiment classification dataset and on a real estate
text classification dataset with 30 topics.

Keywords: Topic extraction · Text annotation · Text classification ·
Word vectors · Text tagging

1 Introduction

Finding specific topics within textual data is an important task for many do-
mains. A multitude of approaches for achieving this task have appeared in recent
years [14], no doubt due to the ever growing amount of textual data available
to organizations and researchers. In the most straightforward case, topic labels
are known a priori and non-domain experts can be trained to manually label
examples using systems such as Mechanical Turk [4]. In a second case, topic
labels are not known prior to annotation and only after a domain expert has
defined them can non-experts be used to label examples. Conversely, once these
topic labels have been defined, many domains require an expert throughout the
entire annotation process [1, 13]. The fourth case, and the one that motivated
our work specifically, is the case in which a domain expert must concurrently
evolve the set of topic labels through manual annotation of examples.

In all of these cases, once an appropriate number of training samples have
been acquired, many different machine learning algorithms have successfully
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been used to automatically identify topics in new examples [14]. Further, re-
ducing the number of training samples needed to produce an accurate predictive
model is beneficial in all instances, although the fourth case in particular benefits
from a flexible predictive modeling approach that can quickly be retrained on
a small number of examples. This is because the domain expert may revise or
modify the current topic labels while exploring their problem domain. An exam-
ple of this scenario arose during a data science project in the real estate domain
where a sentence-level topic annotator was desired. Experts in this domain could
not specify a final or draft set of topic labels, preventing us from utilizing other
approaches that are built to expect a stable set of topics. Further, domain ex-
perts required a lightweight, web-based interface where topics could be easily
defined, modified, and applied at the sentence level while minimizing the num-
ber of training examples needed to produce an automated prediction due to the
large number of topics in their domain.

This paper describes a novel method and application for predicting topics at
the sentence level in order to reach a high level of accuracy with a limited number
of training samples. We evaluate our algorithm on its ability to predict over
30 different sentence-level topic labels within real estate data. We also provide
an evaluation of our algorithm on a standard and publicly available twitter
sentiment-based prediction dataset. In the real-estate domain, expert knowledge
is required for the annotation of the important topics of interest. The topics were
not available or known a priori, further limiting the number of possible expert
annotators. We show that our algorithm achieved a higher prediction accuracy
with a very small number of examples, resulting in a significant improvement
over standard methods for topic identification with small sample sizes. Finally,
our method maintains its ability to predict well in small sample sizes, even in the
absence of negative training examples which would further reduce the burden
on the domain expert. The rest of this paper is structured as follows: in Section
2 we present a review of related work; in Section 3 we provide descriptions of
relevant machine learning algorithms and introduce our architecture and novel
methods; and we conclude with Section 6 where we present our experimental
results and discussion.

2 Related Work

Kim et al. proposes a method for categorizing text at the sentence and document
level using word vector distances [6]. Their algorithm helps deal with sparsity
issues in word data, specifically caused by words looking very different when
actually meaning the same thing. These sparsity issues are often caused by short
documents or a small amount of training data. One of the datasets that they
used was the SemEval 2013 Task B dataset (Twitter), which contains 12,348
tweets that are labeled as positive, negative, or neutral. They found that their
algorithm produced good results quickly and with a relatively small number of
training samples (requiring at least sample sizes in the hundreds).
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Topic and feature extraction is popular in the world of data mining, and there
has been a lot of work for making this process more efficient and more accurate.
[18] proposes an algorithm that combines binary classifiers, Conditional Random
Fields (CRFs), and Expectation Maximization in order to extract information
from business-to-consumer (B2C) emails. Different pieces of the extracted infor-
mation are annotated as specific features. This is done by utilizing templates
that have been predefined based on other similar documents. Their approach
is fully unsupervised and requires no manual corrections or fixes to the data.
Instead of using word vectors for matching, they run low-accuracy annotators
trained on weak features which then feed into their CRF model.

Nguyen et al. introduces an algorithm that combines preprocessing, pattern
recognition, iterative model development, and active learning to annotate and
classify features found within clinical text records [13]. In their algorithm, the
textual data is first standardized and normalized to perform tasks such as cor-
recting spelling, expanding abbreviations, and converting to a standard layout.
The data then moves to the iterative model development process, where models
are trained and evaluated using Support Vector Machines (SVMs) and CRFs.
The model is refined using a visual annotator that allows for some manual correc-
tion, along with active learning that lets the learner select the most informative
data to retrain the model. Their approach requires a relatively large number of
training samples. In one of their tests, they ran various active learning algorithms
on 100 batches of radiology reports with 10 reports per batch. The F-scores for
the active learning algorithms, on average, did not surpass 75% until around
7-10 batches (i.e., 70-100 reports) were run. It also took the algorithms between
30-50 batches to reach a 90% F-score.

Wang et al. offers a new approach to modeling targeted subtopics within
text. Instead of extracting all larger topics within a corpus, they search for more
specific subtopics using a targeted topic model (TTM) [17]. To do this, each
sentence is treated as its own topic that focuses on only one aspect. These topics
are deemed relevant or irrelevant based on a set of specified keywords. Their
model was run on five datasets taken from Twitter that range in size from 10k
to 50k samples.

Finally, several attempts have been made to create architectures that can be
used for new domains. [8] proposes a Python framework to ameliorate the process
of feature extraction in various different forms of media such as video, audio, and
text. Their framework, Pliers, attempts to package the benefits of multiple other
machine learning frameworks and services into one coherent feature extraction
toolbox.

3 Methods

3.1 Standard Approaches

We will now present brief descriptions of several widely applied methods used for
target identification. This section is broken up into two additional subsections:
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feature extraction and machine learning methods. All of the methods described
in this work rely on one of two word embedding methods: bag-of-words (BOW)
or Word2Vec [9, 10]. We briefly describe how these methods were implemented
and incorporated into our work.

Feature Extraction In its simplest form, BOW is an orderless representation
of word frequencies in a document. In the context of this sentence-level tar-
get identification problem, the word counts from each sentence are normalized
into a word frequency matrix prior to classification. The Python natural lan-
guage toolkit (nltk) and native Python String library [2] were used for this step.
Python’s String library was used to parse out punctuation and stop words were
removed using nltk. This was followed by stemming using nltk’s SnowballStem-
mer [2].

Word2Vec is an NLP system that utilizes neural networks in order to create a
distributed representation of words in a corpus [9, 10]. While the BOW pipelines
produce word frequency for each document respectively, Word2Vec creates vec-
tors for each word present in a document. These vectors have a smaller distance
between them for related words. The words Athens and Greece are examples
of this, along with pluralities or tense switches, such as alumnus and alumni or
walking and walked [10]. In order to map words to vectors, Word2Vec uses an
underlying shallow neural network in addition to techniques seen in deep learn-
ing tasks. This unsupervised task takes each individual sentence for a given cor-
pus and, within the neural network, encodes the context of word in the sentence,
much like the deep learning autoencoders seen in restricted Boltzmann machines
and Stacked Denoising Autoencoders [15, 16]. This is done through the usage of
skip-grams, which calculate the probabilities of occurrence for words within a
certain distance before and after a given word. Inter-relating these probabilities
creates similar word vectors for those with higher probabilities.

For the purposes of evaluation in this paper, two Word2Vec models were used.
The first was a model trained on the real estate corpus, and the second was a pub-
licly available Twitter Word2Vec pre-trained model available at http://yuca.

test.iminds.be:8900/fgodin/downloads/word2vec_twitter_model.tar.gz.

Machine Learning Methods Three standard machine learning methods that
are often used in topic identification were selected for comparison: Näıve Bayes,
SVM, Random Forest (RF), and K-Nearest Neighbor (KNN). Standard imple-
mentations of these algorithms are available in scikit-learn. Näıve Bayes was
applied to the BOW features [7] using empirical priors and non-parametric set-
tings. SVMs with BOW features have been shown to perform well on a wide range
of text classification applications [14]. SVMs are not prone to error with high-
dimensional datasets and have been previously shown to be useful in text-based
classification problems [5]. Four standard kernels were tested: linear, polynomial,
radial basis, and sigmoid. The penalty parameter (C) was also varied as 0.01,
0.1, 1, and 10. For the presentation of the results, a single entry for SVMs is
displayed that corresponds to the best parameter selection for each class. KNN
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with two standard distance metrics was tested. Both distance metrics are built
upon Word2Vec embeddings as opposed to BOWs. The two metrics used were
the mean and maximum cosine-similarity between all pairs of words.

3.2 Novel Approaches

Two novel approaches were developed and evaluated in this work that stem from
an alignment-based distance metric. The first approach is a standard KNN clas-
sifier utilizing the novel alignment-based distance metric in place of traditional
BOW distance metrics. To classify a new unknown sample, the alignment-based
KNN calculates the distance between the target sample and all labeled data.
The k-nearest neighbors are then found and the majority class is returned. The
second approach is an alignment-based threshold classifier that only requires
positively labeled data and a predefined threshold. This threshold-based classi-
fier measures the distance from a target unknown sample to only the positively
annotated samples. If the score is above the threshold, a positive class prediction
is returned. The success of both methods is dependent on the alignment-based
distance metric described below.

Alignment Distance Metric All alignment-based approaches were imple-
mented using the NeedlemanWunsch algorithm that has been made famous for
its use in aligning biological sequences [12]. We have adapted the scoring and
gap penalties for the target identification classification problem. The algorithm
produces a numerical score based on the aggregation of misalignment penalties
between words (cosine-similarity) combined with the penalties for skipping a
word in either the labeled or unlabeled sentence. The cosine similarity misalign-
ment score is the dot product between the vector representation of each word.
There is no gap penalty for skipping a word in the unlabeled sentence; however,
skipping a target word carries a high penalty and is therefore avoided by the
algorithm. This forces the algorithm to match all target words that have been
identified by a domain expert. An example alignment of two sentences is shown
in Table 1. For all alignment-based methods, the Word2Vec implementation de-
scribed in [10] was used.

Standard Distance Metrics In addition to these two novel approaches, we
implemented and tested two standard Word2Vec distance metrics. The first met-
ric was the maximum cosine-similarity between pairs of words in annotated and
unknown sentences. The second was the average cosine-similarity score between
pairs of scores.

4 Use Cases

4.1 Real Estate

The domain we designed our original system for involved property descriptions
from real estate data. This data was created by realtors and contains information
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Table 1: Example alignment of two sentences with an aggregate alignment score
of 0.91. The first sentence has been annotated as a positive example of the
Master Bedroom Downstairs target class. The second sentence has no known
annotation. The optimal alignment shown results in a score of 0.91 with mis-
alignment occurring between bedroom and bedrooms. Gaps in the annotated
sentence matched to words in the unknown sentence are not penalized.

Annotated: — master bedroom — ——- downstairs
Unknown: two master bedrooms are located downstairs

about various real estate listings. Each listing has a large amount of metadata
(e.g., location, images, basic features); however, the main piece of information we
use in our system is the description written for each listing. This description is
usually no more than a short paragraph and is created by the real estate agent to
summarize the listing as a whole. It can include any information that the agent
wishes to convey to the potential buyer, such as property features, kitchen ap-
pliances, etc. By analyzing a listing’s description, we attempt to extract specific
features about the listing itself.

We created a web application using the Angular JavaScript framework. The
main interface for this application provides a way to easily and quickly annotate
real estate listings. This interface pulls listings that have not yet been annotated
from our server, along with the sentence and word data associated with that
listing. It also retrieves the topic information so that the listing can be properly
annotated.

Once a listing has been retrieved, the annotator can select a sentence from
the listing description to annotate. They can then toggle the individual words
in the sentence that match a specific topic. If they believe that a pattern should
be mapped to a topic that does not currently exist, then they have the option to
create it. Once a topic has been defined, it can then be used by future annotators.
When an annotator is satisfied with an annotation, they simply click submit and
it is stored inside of the annotations database to be used in future alignment
predictions.

Along with this annotation interface, we also included other pages within
the web application that provide statistical information regarding the database.
Some of these pages display simple information, such as the specific progress of
different annotators. Other pages give annotators more control over the database
itself, allowing them to take actions such as correcting mistakes in previous
annotations or modifying topic names.

4.2 Twitter

Twitter has grown quite large in the past decade, along with the amount of
textual data it has created. This data has proven to be a popular source for test-
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Fig. 1: One iteration of cross-validation. This was repeated 20 times in total for
training set sizes 2 to (n/2 - 2)

ing and implementing text-based machine learning algorithms [3, 6, 11, 17]. We
tested our alignment algorithm on the Twitter dataset used in [6]. This dataset
includes the text data for 12,348 tweets and annotations that have been made for
each tweet. These annotations are based on the entire tweet and represent the
overall sentiments conveyed therein. The possible sentiment values include pos-
itive, neutral, negative, objective, and objective-OR-neutral. In our experiment
and the experiment done by [6], only positive, neutral, and negative sentiments
are used.

In order to annotate this dataset, we created a simple interactive widget that
runs inside of a Python Jupyter Notebook. This publicly available widget is very
similar to the annotation interface we created for the real estate data and can
be seen in supplemental Figure 4. We store the tweets in a text file, which the
interface uses to select tweets at random. Once a tweet is selected, the annotator
can toggle the words in the tweet that they believe match the sentiment that was
predicted. For example, if a tweet was labeled as having a positive sentiment,
then only words that are relevant to that sentiment will be selected and stored
in the annotation. This allows us to store annotations in a very similar format
to the ones that were stored for our real estate data.

5 Evaluation

Each classifier was subjected to iterative cross-validation as a function of the
training size for each category. This procedure is summarized in Figure 1. The
average F1 score across all iterations for each training set size was calculated
and plotted as a function of training set size. Two examples are shown in Figure
2. The area under this curve was then calculated to measure the ability of each
classifier to perform well for small as well as larger training set sizes. The 95%
confidence interval was calculated for the area under the F1 curve as a function
of the training set size.

6 Results and Discussion

We compared our alignment-based algorithms to bag-of-words derived SVM,
Näıve Bayes, random forest, and KNN classifiers on 30 real estate categories
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(a) C. Fenced Backyard (b) D. Eat-in Kitchen

Fig. 2: Two sample categories showing the F1 score versus the training set size
for the five different classifiers tested.

and positive/negative sentiment tweet prediction. Four algorithms based on
Word2Vec word embedding were evaluated. Two standard distance metrics (mean
and max) were evaluated as baseline classifiers in addition to two novel alignment-
based classifiers (Alignment KNN and Alignment Threshold). These results are
summarized in Table 2 which shows the iterative cross-validation confidence in-
tervals of the area under the F1 curve versus training set size. The table is sorted
by the average score for the Alignment Threshold method. The first column in
the table represents a summary of how this method performed in comparison to
the others. If the Alignment Threshold method had a higher and non-overlapping
confidence interval when compared to all other methods, this is indicated with
a W+. If the lower bound on the Alignment Threshold method was higher than
any other method and does overlap, this is indicated with a W. A T was used
if the Alignment Threshold confidence interval was not higher than any other
method but still overlapped the best method. All other cases are indicated with
an L. In total, there are 29% W+, 35% W, 19% T, and 16% L, meaning that the
Alignment Threshold method was as good or better in 84% of the classes. These
results demonstrate how the alignment-based algorithms are able to perform
better on fewer samples or equivalent to standard approaches. This is signifi-
cant even in the case of equivalent accuracy as the alignment-based threshold
algorithm does not require negative training samples which reduces the number
of samples an expert must annotate. Further, all alignment-based methods are
built upon a semi-supervised learning approach where large amounts of unla-
beled data is used to reduce the need for labeled data.

It was our desire to test our algorithm against the multi-level kernel system
developed by Kim et al. discussed in section 2; however, we were unable to find a
public implementation of this algorithm, and our attempts to reach the authors
were not successful. In their paper, the authors evaluated their algorithm using
the Twitter dataset also used in this paper [11], which includes 12,348 tweets that
are each matched with an overall sentiment value. The multi-level kernel system
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was able to achieve accuracy between around 80% and 90% using samples sizes
ranging from the low hundreds to the mid thousands, with their best accuracy
result being 0.808 (with a standard test data split of 25%). No results were
presented for sample sizes less than 50.

Further inspection of Table 2 shows that in some cases the Alignment Thresh-
old classifier performs poorly while the Alignment KNN classifier, which uses
both positive and negative training examples, performs better or equivalent to
standard approaches. We believe this is due to the underlying word embed-
ding vectors for the specific targets. Words such as those found in positive and
negative tweets are relatively ubiquitous, while those found when mentioning
a walk-in closet are relatively rare. It is reasonable to assume that hard coded
rules could also be developed in some cases, but that the approach presented in
this paper would be preferred as it is easily extended to additional categories
without the need to maintain a rule management system.

The original annotation system was researched and built specifically for a
company specializing in real estate technology. Because this data is proprietary,
our algorithms are also tested our algorithm on a publicly available Twitter
sentiment prediction dataset. The original Javascript Angular based system is
proprietary, but we have implemented the core functionality of our system using
Jupyter Notebook widgets. The widget loads directly inside of the Notebook and
displays a tweet’s text, its overall sentiment value, and buttons that represent
each word in the tweet. These buttons can be toggled to create the annotation
pattern. All of this data is stored in a Pandas DataFrame and serialized to
its own file, which can be used to train and evaluate our algorithm. We have
made this version of the annotation interface open source in addition to all
alignment-based implementations and evaluation code (https://github.com/
Anderson-Lab/sentence-annotation).

7 Conclusions

Being able to extract topics from text is an ever-growing problem for many
domains given the large amount of textual data that is constantly being created.
Therefore, it is necessary to minimize the amount of annotating needed to achieve
high levels of accuracy. To accomplish this, we introduced a novel topic prediction
algorithm that requires only a small amount of human annotation. Our results
show that this approach can provide significant performance benefits when the
target labels are not known a priori or when the sample size is small. Future
directions of this work include experiments to determine if these alignment-based
distance metrics continue to provide non-redundant benefits as the sample size
grows significantly. For community and reproducibility purposes, our methods
are available in a public repository that includes a Jupyter Notebook annotation
widget that allows for annotation to easily be carried out on other real world
datasets.
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8 Supplemental

Our work was directly motivated to reduce the burden of interaction with human
supervisors, and therefore, we present an overview of our architecture that can
be broken up into four distinct phases: preprocessing, annotation, learning, and
evaluation. Figure 3 illustrates these phases and the steps that are taken in each.

Preprocessing & Cleaning The first step in our pipeline involves processing
the raw listing description data and converting it into a consistent format. Each
description is stripped of any extra whitespace, transformed into all lowercase
letters, and decoded using the UTF-8 character encoding. Once this has been
done, the description is separated into its constituent sentences. These sentences
are then broken up and become lists of words that can be used in our alignment
algorithm.

Annotation In order to expedite the annotation process, we made two simple
annotation interfaces; one for each of the datasets that we tested our algorithm
on. A screenshot of the Jupyter widget is shown in Figure 4.
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Fig. 3: Architecture Pipeline

Fig. 4: Python Tweet Annotation Tool
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1 Introduction

Artifacts that take advantage of Machine Learning (ML) influence our daily life
to an increasing extent. The development and use of these artifacts often leaves
out the human actors and the context and thus risks to become technocentric [6].

Many ML techniques, for example active learning, interactive learning or
machine teaching, calls for user involvement [3, 10, 12, 13, 15]. To our knowledge
there is a lack of research concerning relations between humans and ML-based
artifacts, the attention is instead often on the desired outcome [4, 11], for example
trust.

If we are to understand how ML can support humans, we need to turn at-
tention to the human-technology relations. In this work we will use a postphe-
nomenological lens and focus on how different ML techniques can create, build
and maintain relations between humans and technology [5, 14].

Our work is explorative and use material sketching to produce artifactual
knowledge [7], methodologically this fits into a Research Through Design ap-
proach [16].

In this work, our artifact and the relevance of a postphenomenological ap-
proach is the main contribution. In the work presented here the focus is on
adaptive learning in a background relation [5] and identifying situations where
the background relation can promote a transition to another type of relation
(embodied, hermeneutic, alterity). We hope to initiate a discussion on this ap-
proach and inspire further work by our contribution.

In this extended abstract, we will focus on the artifact and its relevance
for human-technology relations and only briefly expand on application context,
theory and methodology.

2 Related research and Methodology

As a blueprint for this work we have followed the directions of Ohlin et al. [9]
and we aim at promoting transitions between relations initiated either by the

? This work partially financed by the Knowledge Foundation through the Internet of
Things and People research profile. I would also like to thank Paul Davidsson and
Carl Magnus Olsson for invaluable support during the work.

73



2 L. Holmberg

artifact or the user. We start by creating an adaptive ML-backend for an existing
commuter app 1 2. The ML-backend predicts and presents the users next journey
when the app is started, the prediction is based on historical individual travel
patterns and the users ML-model is trained online. To create a baseline for our
predictions, personas based on a local transportation company are used [8].

3 Result and discussion

In our process to create an artifact that meets our initial design goals regarding:
prediction accuracy, cloud service cost and performance, we have iterated and
re-framed our artifact multiple times. The users trust in the predictions is central
to be able to build relations, but trust doesn’t automatically follow prediction
accuracy [4]. This implies an adaptive backend in the background that delivers
reasonable accurate predictions for data sets that reflects use over weeks, months
and year.

The current artifact iteration is a solution that extends the Android com-
muter app and adds a backend based on Google Cloud services (Firebase, Big-
Query, compute engine), TensorFlow estimators [1, 2] and Node.js 3. With our
personas in focus we created one travel pattern that is periodic, one that drifts
over time and one more random. Based on this data an adaptive ML-backend was
created that uses different ML-Algorithms depending on amount of labeled data
and noise in input data. The resulting system delivers journey predictions to the
app in an acceptable time-frame (less than 2 seconds) and identifies situations
were transition to another type of relation is appropriate.

The main contribution in this work is identifying situations where there is
a need for a transition to a new type of human-technology relation. Since the
work presented here builds a background relation the transitions calls for an
ML-technology that allows or invites users to get involved.

4 Conclusion

This extended abstract set out to turn attention to the human-technology rela-
tions ML-artifacts promote. We have done that by using the vocabulary of post-
phenomenology and by exploring the design space created by a commuter app.
By specifically focusing on adaptive learning in a background relation and identi-
fying situations that calls for a shift in type of relation (embodied, hermeneutic,
alterity) we have laid a base for future research.

In terms of future research we particularly suggest to include active learning,
interactive learning and machine teaching to explore the relations these tech-
niques promote.

1 https://skanependlaren.firebaseapp.com
2 https://play.google.com/store/apps/details?id=se.k3larra.alvebuss
3 https://github.com/k3larra/commuter/
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With the ongoing advances in the area of Internet of Things, the number of
devices with sensors streaming data in our surroundings is growing rapidly. This
will create new possibilities in continuously monitoring the state of the envi-
ronment. However, this increasingly more complex setting is also posing new
challenges, e.g. how to properly fuse data from different types of sensors with
uncertain availability.

We are focusing on a setting where the task is to do real-time continuous
estimations of certain aspects of the state of an environment. These estimations
are based on data streams from a heterogeneous and dynamic set of sensors in
that environment. Typically, data from different types of sensors needs to be
fused in order estimate the aspect. For instance, within an office setting this
could be what type of activity is currently taking place in a room or the number
of people in a certain area of a building. In previous work [1], the concept of
dynamic intelligent virtual sensors was suggested as a framework for data fusion.
Common for many scenarios of this type, is that there is no available model that
fuses the data and estimates the desired aspect of the state of the environment.
Thus, such a model needs to be learned based on the streamed data provided
by the sensors. Although the sensors may generate large amounts of data, there
is typically a lack of labeled data that can be used for supervised learning.

The interactive learning challenge described above has been identified within
an ongoing project with a number of industrial partners, partially validating its
relevance to many real world applications.

1 Application Scenario Description

In a given environment, we define the set of all sensors that generates data
as S = {s1, s2, . . .}. While all sensors in S produce at least one instance of
data, note that they do not necessarily have available data at all times. We
also introduce a set St ⊆ S, containing all sensors from which data is available
regarding the current point in time t. The data is generated by the sensors in a
sequential fashion. Each instance of data contains the following information: id
(unique identifier for the sensor), data (numerical or categorical measurement of
the environment), ts (timestamp, the point in time when the data was measured
according to the device).
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We define a set of states, Y , representing the possible values of the aspect
of the environment that we are interested in. If the entire state set is known
beforehand, it can be defined along with the task. If not, the state set has to be
defined over time, as labeled data becomes available. The labels provided by a
user, denoted yts ∈ Y , may be used as training data and can be seen as ground
truth for the state of the environment at time ts. They can be provided by the
user’s own initiative or when queried by the learner. The labeled data are stored
for a certain time ct, which can be set based on e.g. data storage possibilities.

The problem discussed in this paper can now be stated as follows: At any
given point in time t, the task is to maximise the accuracy of the estimation of
an aspect of the current state of the environment ŷt ∈ Y , using data from St, as
well as labels and data, where (t− ct) ≤ ts < t, as input.

2 Discussion

In active learning the learner asks an oracle to label data [3]. Compared to the
more common pool-based setting, where the learner starts with all unlabeled
data and can ask for labels in any order, our setting is stream-based. Starting
with a shortage, or non-existence, of labeled data, the algorithm must learn and
adapt over time, as labeled data gradually becomes available. At each point in
time the learner must decide whether to query or not, as it is not possible to query
for old data points. Still, how much and when to query needs to be balanced, as
there is a cost attached to it. Also, the aspect of reliability of the provided labels
has to be considered, as human feedback is typically noisy. Different humans do
not always agree on definitions or even with themselves over time.

Another complicating factor of the problem is that the entire state set might
not be known from the beginning. This means that the learner must query not
only to obtain training data, but also to learn the state space. If, for instance, the
algorithm is not able to classify a state at a given time with sufficient certainty,
it could query the user for the current state.

Generally, the different sensors do not provide data at synchronized points
in time, as some are time triggered, with non-standardized time intervals, while
others are event triggered. Furthermore, the timestamp attached to each data
point is based on the sensor’s individual clock. The learner, or a preprocessing
step, needs to accommodate for this and align the data time-wise.

Sensor intensive systems can produce large amount of data and while it might
be possible to store some data for a specified length of time, chances are all data
cannot be stored indefinite. The learner must therefor incorporate the knowledge
obtained from the data, so that it is not lost if the data is later discarded.

Transfer learning techniques is another way to handle the shortage of labeled
data. For instance, if a model is trained to classify an aspect based on data from
sensors in room A, the model could be adapted to do the corresponding task in
room B. While transfer learning has been used successfully in many applications,
the case where the input feature space for source and target (e.g. sensors in room
A and B respectively) differ, is still a relatively new field of research [2, 4].
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1 Institute of Computer Science, Czech Academy of Sciences, repicky@cs.cas.cz
2 Faculty of Mathematics and Physics, Charles University

3 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University

1 Introduction

Black-box optimization denotes the optimization of objective functions the values
of which are only available through empirical measurements or experiments.
Such optimization tasks are most often tackled with evolutionary algorithms
and other kinds of metaheuristics methods (e. g., [12]), which need to evaluate
the objective function in many points. This is a serious problem in situations
when its evaluation is expensive with respect to some kind of resources, e.g., the
cost of needed experiments.

A standard attempt to circumvent that problem is to evaluate the original
objective function only in a small fraction of those points, and to evaluate a
surrogate model of the original function [5] in the remaining points. Once a model
has been trained, the success of the optimization in the remaining iterations
depends on a resource aware selection of points in which the original function
will be evaluated, which is a typical active learning task.

The surrogate model used in the reported research is a Gaussian process (GP)
[11], which treats the values of an unknown function as jointly Gaussian random
variables. The advantage of GP compared to other kinds of surrogate models
is its capability of quantifying the uncertainty of prediction, by calculating the
variance of the posterior distribution of function values.

2 Novel Approach to GP-Based Active Learning

So far, active learning of points in which the original objective function will be
evaluated during a GP-based surrogate modelling nearly always used a fixed
covariance function of the surrogate model and a fixed active learning algorithm
(e.g., [9, 15]).

In the reported research, an adaptive selection of the covariance function
according to the available data is investigated.

To this end, a pool of kernels of 8 various kinds has been established, including
non-stationary kernels and composed kernels of depth one (Figure 1).

Adaptive selection of GP covariance functions is known from GP regression
literature [3, 6, 8]. Differently to our approach, the number of available kinds of
simple kernels is smaller; on the other hand, they can be recurrently composed to
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an arbitrary depth through algebraic operations. An additional difference con-
cerns the criteria according to which the models are selected: Whereas in [6], only
likelihood is used, and in [3, 8], only the Bayes information criterion (BIC ) [13]
was used, our research includes the investigation of suitability of different crite-
ria for the selection of GP covariance functions in surrogate modelling. Since the
maximum likelihood estimate is prone to favour overfitting models, we consider
only criteria that account for model complexity. Apart from the BIC used in
[3, 8], we consider also the Akaike information criterion (AIC ) [1], the deviance
information criterion (DIC ) [14], and a criterion proposed by Watanabe in [16],
called by him widely applicable information criterion (WAIC ).

2.1 Algorithm of Active Learning

The adaptive selection of covariance function is based on GP-based Doubly
trained surrogate covariance matrix adaptation evolutionary strategy (DTS-
CMA-ES) [2, 10]. A GP model is built in each generation of the evolution strat-
egy. When the model is trained, a fraction of the population maximizing the
probability of improvement [7] is selected for evaluation with the expensive ob-
jective function. The model is retrained with the newly evaluated points and used
to rank the whole population. The fraction of points for evaluation is adapted
according to recent performance of the surrogate model, more precisely, to its
ranking difference error in the last iteration. A novel contribution of the re-
ported research is a selection of the covariance function according to one of the
aforementioned criteria, taking place at the training phase.

3 Results and Conclusion

The best performing model selection in our experiments are those based on AIC
and BIC, with no clear difference between them. Results for DIC and WAIC are
not shown because we have not yet succeed to implement these.

On average, optimization results do not show an improvement on the DTS-
CMA-ES. Nevertheless, a promising result has been obtained on the “Step el-
lipsoidal” function, characterized by plateaus lying on a quadratic structure, es-
pecially in multi-dimensional variants (Figure 2). The most frequently selected
kernel for this function under both AIC and BIC has been the sum of the squared
exponential and the quadratic kernel, which provides an intuitive interpretation
of the function.

This result suggests that composite kernels can capture global features of
the objective function landscape and provide better predictive performance, but
extending the pool of covariances might be needed e. g., by composite kernels
of arbitrary depth. This is challenging due the computational cost of searching
through an open-ended space of kernel expressions. A possible solution might be
found in a co-evolution of the kernel for the surrogate model and the candidate
solution to the objective function.
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10. Pitra, Z., Bajer, L., Holeňa, M.: Doubly trained evolution control for the surro-
gate CMA-ES. In: Parallel Problem Solving from Nature – PPSN XIV, pp. 59–68.
Springer International Publishing (2016)

11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning.
Adaptative computation and machine learning series, MIT Press (2006)

12. Schaefer, R.: Foundations of Global Genetic Optimization. Springer Publishing
Company, Incorporated, 1st edn. (2007)

13. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2),
461–464 (1978)

14. Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A.: Bayesian measures of
model complexity and fit. Journal of the Royal Statistical Society. Series B: Sta-
tistical Methodology 64(4), 583–616 (12 2002)

15. Volz, V., Rudolph, G., Naujoks, B.: Investigating Uncertainty Propagation in
Surrogate-assisted Evolutionary Algorithms. In: Proceedings of the Genetic and
Evolutionary Computation Conference. pp. 881–888. GECCO ’17, ACM, New York
(2017)

16. Watanabe, S.: Algebraic Geometry and Statistical Learning Theory. Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University
Press (2009)

Adaptive Selection of Gaussian Process Model for Active Learning

82



A Appendix

A.1 Covariance Functions
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Fig. 1. Rows: Covariance functions. SE: Squared exponential. NN: neural network. LIN:
linear. QUAD: quadratic. PER: periodic. ADD: additive. SE+NN: sum of squared ex-
ponential and neural network. SE+QUAD: sum of squared exponential and quadratic.
Columns 1–2: The covariance function on R centered at point 2 (Col. 1) and three in-
dependent samples from the GP (Col. 2). Columns 3–5: The covariance function on R2

centered at [2 2]T (Col. 3) and two independent samples from the GP (Col. 4 and 5).

A.2 Experimental Setup

The ongoing experiments are performed within the framework Comparing con-
tinuous optimisers [4], in particular on the 24 benchmark functions forming its
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noiseless testbed. Each function is defined everywhere on RD and has its global
optimum in [−5, 5]D for all dimensionalities D ≥ 2. For every function and two
dimensionalities, 2D and 10D, 15 independent trials of each algorithm are con-
ducted on multiple function instances, defined by transformations (translations,
rotations and shifts) of both the search space and f -values. A trial terminates
when the optimum is reached within a small tolerance or when a given budget
of function evaluations, 250D in our case, is exhausted.

A.3 Experimental Results
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AIC-DTS
BIC-DTS
CMA-ES

Fig. 2. Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima
against the number of function evaluations in 10D for all satisfactorily implemented
algorithms. CMA-ES: Covariance matrix adaptation evolution strategy. DTS-CMA-
ES: Doubly trained surrogate-CMA-ES. AIC-DTS, BIC-DTS: DTS-CMA-ES with the
adaptive covariance selection according to AIC and BIC, respectively. The medians
and quartiles were calculated from 15 independent runs on different function instances.
Distances to optima are shown in the log10 scale.
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ASML, De Run 6501, Veldhoven 5504DR, the Netherlands

1 Introduction

Feature Selection (FS) has been applied to numerous domains, and shown to be
effective in increasing the performance of machine learning algorithms. In the semi-
conductor industry, FS is part of various prediction tasks that aim at avoiding
production stops and yield loss. For example, it can be used for: (i) diagnostics,
wherein relevant features constitute potential root causes, with their identification
being the initial step in a detailed investigation of process defects [3]; (ii) control, as
the values of a small set of relevant features can be used to group objects and apply
actions per group [1]; (iii) improving prediction performance and interpretability,
by enforcing sparsity [4, 7]. Nevertheless, when analyzing manufacturing datasets,
one faces two particular challenges, as in other real-world datasets:

– High-dimensionality: typically, the number of features p to be evaluated in
FS can reach hundreds of thousands and it is much larger than the number of
instances n.

– Collinearity: some features may be strongly correlated with one another.

These characteristics challenge the robustness of FS against spurious correlations.
To overcome these challenges, we propose an interactive FS scheme in which a user
provides expert feedback, by assessing the relevance of the features with respect
to a performance metric and thereby separating relevant features from spurious
correlations. An initial approach has been implemented as a web application in
ASML, the leading manufacturer of lithography machines and major player in
the semiconductor industry. Next, we give a detailed explanation of the proposed
interactive scheme, while the supplementary material provides further details on
the implementation.

2 Interactive Feature Selection

For integrating expert feedback, we use the knowledge elicitation framework pro-
posed by Daee et al. [2]. It is based on a bayesian regression model with spike
and slab (s&s) sparsity-enforcing priors [2, 5]. Let us denote by y ∈ Rn the tar-
get of interest, and let X ∈ Rn×p be the feature set. Assume w ∈ Rp to be the
regression coefficients. The goal is to define the posterior distribution of w, given
that y ∼ N (Xw, σ2I) and wj ∼ zjN (0, ψ2) + (1 − zj)δ0 (i.e., s&s prior), where
δ0 is a Dirac delta, and zj encodes the relevance of the features (zj = 1 if feature
j is expected to contribute to the regression and zj = 0 otherwise). For ease of
notation, we consider σ2 and ψ2 to be constants. The computation of the posterior
distribution of wj for all j = 1, . . . , p depends on the s&s prior but also on the
feedback provided by a domain expert (relevant, irrelevant, do not know). These
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Fig. 1: Evaluation of FS approach for different query strategies and user feedback.
Left: Evaluation with imperfect user feedback. Right: Evaluation with real expert
feedback.

posteriors are sequentially adapted every time an expert is queried about the rel-
evance of a feature. In order not to overwhelm the expert, we use smart query
strategies that reduce the number of required user feedback. We implement the
Expected Information Gain (EIG) strategy proposed in Daee et al. [2].

We evaluated the implementation of our FS scheme with an ASML expert. We
used a dataset with 344 features and 100 instances from the logs of ASML machines.
The results are shown in Fig. 1, for a simulated expert (Fig. 1, left) and for a
knowledgeable domain expert (Fig. 1, right), with the former being less trustworthy
than the latter. In these results, “All feedback” refers to the performance of the
bayesian regression with s&s priors after all expert feedback is received; we note
that the best achieved MSE in Fig. 1 left is higher than the best MSE in Fig. 1 right,
but in both cases the EIG strategy reaches the best MSE after ∼ 250 feedbacks.
Even with a simulated expert (Fig. 1, left) we see an improvement on the predictive
performance with respect to not having an expert in the loop (i.e., when the number
of feedback equals 0). This is crucial for the robustness of our application.

3 Open questions and future work

At present, we still face several challenges in the implementation of the proposed
scheme. First, our datasets have typically thousands of features, such that asking
feedback from a domain expert for all these features is unfeasible. Second, domain
experts are often not sure of the feedback for some particular features, and their in-
put might also be biased. To address these challenges, we are adopting the following
steps:

– group features that relate to the same effects/machines in a single category and
ask the expert to provide feedback on the entire category at once.

– visualize the data in an informative way to help the expert make a decision on
the relevance of a particular feature category and avoid biases.

How to group features into categories and how to visualize the data in the most
informative way remain an open question. In particular, the data visualization is
a challenging task since (1) dimensionality reduction methods show artifacts, (2)
assessing the quality of a visualization is not straightforward and (3) often only
well-known effects and structures emerge in the visualization. One needs to get rid
of the latter to discover the underlying patterns.

Towards Interactive Feature Selection with Human-in-the-loop
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Fig. 2: Snapshot of the visualization of the proposed FS framework

4 Supplementary Material: web application

In this work, we sought to use smart query strategies to reduce the number of
required user feedback. While some state-of-the-art tools allow for user feedback,
none of them are directly applicable to our problem setting. RapidMiner, Weka, and
FEXUM [6] focus on supervised and unsupervised problems allowing only offline
user feedback. KNIME has an active learning component, but it cannot be directly
applied to FS. Therefore, we have implemented a web application in ASML for the
interactive Feature Selection scheme.

The expected users of our framework are domain experts without Machine
Learning knowledge but with scientific background e.g., domain experts, field en-
gineers, etc. The experts can use our tool to easily find the relevant features to a
selected target variable. The User Interface of the proposed FS scheme is presented
in Fig. 2. The expert initializes a workflow by selecting one or more performance
metrics to monitor (targets y) on the left panel in Fig. 2. The application, with
non-linear embeddings (Fig. 2 middle plot), helps the user understand complex re-
lations and interconnections between multiple features and the target. Particularly,
users can select multiple features and observe interactively, via a t-sne embedding,
their 2D visualization colored by the values of the target.

In each iteration a user is provided with a feature (left most panel) for which
he/she is required to give feedback (relevant feature, irrelevant feature or do not
know). As mentioned in the abstract, this feature is selected sequentially via knowl-
edge elicitation with the EIG query strategy. The user interacts with the application
to provide feedback on a certain number of features. To help the decision-making
process, on Fig. 2 (right), three plots are shown: (i) the R2 value of the linear regres-
sion model after each expert feedback. This provides information on the predictive
power of the model in each iteration; (ii) the values of the feature that the user
is evaluating colored per cluster. This gives information on how the target value
relates to the underlying structure of the data; (iii) a list with all the feedback
that he/she has already provided. Once the decision has been made, the feedback
is given on the left panel, the posterior distribution of the regression is updated
and the algorithm suggests a new feature.

In this way, actively querying the expert for feedback results in better user
experience as, the users are not expected to examine all the features to find those
whose relevance they should assess.

Towards Interactive Feature Selection with Human-in-the-loop
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1 Introduction

Surrogate model selection is an active-learning approach to cost-aware contin-
uous black-box optimization in domains where the evaluation of the black-box
objective function is expensive, e. g., obtained experimentally or resulting from
comprehensive simulations. Active reusing of knowledge represented by landscape
properties of the objective function accross different tasks can provide additional
information for more reliable decisions in terms of a suitable surrogate model
and a suitable setting of its hyperparameters. However, research into using met-
alearing [13] and especially Exploratory Landscape Analysis (ELA) [14] in this
context is only starting [20]. Our goal is to develop a learning system capable to
recommend a surrogate model on the basis of the knowledge obtained in previous
black-box optimization tasks.

In this paper, we provide a first step necessary to construct a learning system
applying knowledge from previous tasks to a new one: a study of the applicability
of ELA to two important kinds of surrogate models – Gaussian processes (GP) [18]
and ensembles of regression trees (random forests, RF) [3,4,6]. Results using the
noiseless benchmarks of the Comparing-Continuous-Optimisers (COCO) platform
[9] in the expensive scenario, where at most 50D evaluations are available, are
analysed for statistical dependences between model performance and a broad
variety of landscape features.

2 Exploratory Analysis of Fitness Landscapes

In order to achive our goal, the relationships between data properties and
surrogate model performances has to be analysed in detail first. Second, the
investigated relationships will be used to design a system capable to transfer
knowledge about relationships from processed tasks to new ones.

The surrogate model selection problem is analogous to the algorithm selection
problem (ASP) formulated in [19] and it aims at selecting the most suitable
surrogate model for a specific optimization task. Considering ASP, ELA [14] aims
at characterizing the landscape of an investigated function and deriving rules how
those characteristics influence the performance of the optimization algorithm.
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We analyze relationships between the mean-squared error (MSE) of 29 dif-
ferent settings of GP or RF described in Appendix A.1 and 79 out of 91 ELA
features (see also Appendix A.1) which didn’t yield constant over 24 noiseless
benchmark functions from the COCO framework [9] in dimensions D = {2, 5, 10}
and their 15 instances4 for any of the tested GP or RF settings. The datasets
consisting of 50D points for each instance per function were generated by a
random improved Latin Hypercube design [1] covering the input space [−5, 5]D.
The overall predictive performance of the surrogate models was tested through
5-fold cross-validation on the generated datasets.

As a first step, we performed a simple correlation analysis using the Spear-
man correlation coefficient between the MSE of the considered models and the
investigated ELA features. However, no single ELA feature was found to be
discriminative for surrogate model performance, although a few features were
positively (or negatively) correlated with all considered models, which indicates
the landscape to be difficult (or easy) for fitting any of them.

As a second step, a classification tree representing a multivariate statistical
analysis was built using the obtained results. The resulting tree is depicted in
Figure 1. 79 ELA features were classified into 29 classes according to which of the
29 considered settings of GP and RF achieved the lowest MSE for the respective
combination of dimension and function among all evaluated settings. Features
describing the global structure of the objective function landscape were detected
as most distinctive (f12, f15, f61, f62, f64, f70, and f71). Global structure of the
landscape can possibly influence the performance of a particular model. Very
interesting is the discovered importance of basic features such as dimension (f1) or
extreme values of the objective function (f3). In addition, skewness (f35) and the
kurtosis (f36) also had influence on surrogate model selection. The last mentioned
observations may suggest that even a set of simple features can provide valuable
information about the model suitability.

3 Discussion

The results suggest that clear relationships between the performance of the 29
compared settings of GP and RF models and the considered features are not easy
to derive. Features describing global properties of the landscape are very useful
in case of selection of the surrogate model and its settings. On the other hand,
simple features can also provide important knowledge useful for future decisions.

The intended direction for our future research is to apply the obtained
knowledge to select a suitable surrogate model for previously unseen data in
designing a metalearning system. Another important research direction is to
investigate the impact of the sampling strategy in the input space to the resulting
landscape features and their relationship with the perfomance of the considered
models and their various settings.

4 Function instances are defined by transformations (translations, rotations, and shifts)
of both the search space and function values.
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A Appendix

A.1 Experimental setup

The GP regression model in gpml implementation5 was employed using 9 different
covariance functions, listed in Table 1, and constant mean µ(x) = mean(y), where
y are the outputs of the training set. The hyperparameters were optimized with
MATLAB’s fmincon using 5 optimization trials, except for the additive covariance
function kADD, which was optimized with only 3 trials due to its relatively high
complexity. The rest of initial values for hyperparameters, together with their
bounds are reported Table 2. The initial values for repeated optimization trials
were sampled.

The RF models were tested using the full-factorial desing on the ensemble
method, splitting method, and error gain function. In addition, the number of
trees ntree, the number of points Nt, and the number of dimensions used for
training the individual tree nD were sampled from the values in Table 3. Thus,
the RF experimental part sampled RF models from 1600 different settings. MSE
(errMSE), variance of predicted y-values (errvar), and nearest-neighbor entropy
estimator [2] (errNN) were employed as error gain functions (err). In bagged
RF, cross-validation pruning [3] was utilized to optimize the tree structure. In
addition, the following five regression models were used in leaves: constant, linear,
linear with interactions, quadratic without interactions, and full quadratic. The
model providing the best fit according to the MSE loss function was always
selected for the relevant leaf and appropriate data. In boosted RF, the maximum
tree depth was set to 8, in accordance with [6].

Considering decision tree settings regardless the ensemble method, the five
splitting methods from the following algoritms were employed: CART [3], SE-
CRET [7], OC1 [15], SUPPORT [5], and a method from [10] (PAIR). The re-
maining decision tree parameters have been taken identical to settings from [17].

The 91 calculated landscape features were from the following 11 ELA feature
sets [11,12]: y-Distribution, Levelset, Meta-Model, CM-Angle, CM-Gradient Ho-
mogeneity, CM-Convexity, NBC, Dispersion, Information Content, Basic, and
PCA. Feature sets requiring additional evaluations of the objective function
(Convexity, Local Search, and Curvature) and cell-mapping feature sets with
high computational or memory requirements in higher dimension (GCM, Barrier
Trees, and Linear Model) were omitted. All landscape features were calculated
using default settings from [12].

5 http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Table 1. Experimental settings of GP covariances: d – metric d(xp,xq), P – isotropic
distance measure P = l−2ID, x̃p, x̃q – inputs augmented by a bias unit, k(i)

(
x(i)
p ,x(i)

q

)

– one-dimensional kSE, R ⊆ {1, . . . , D} – set of selected degrees of interactions. kSE and
kRQ were used in both isotropic and automatic relevance determination (ARD) versions
(kARD

SE , kARD
RQ ).

name kernel

squared-exponential kSE(d;σf , l) = σ2
f exp

(
− d2

2l2

)

k
ν= 1

2
Matérn(d;σf , l) = σ2

f exp
(
− d
l

)

Matérn family k
ν= 3

2
Matérn(d;σf , l) = σ2

f

(
1 +

√
3d
l

)
exp
(
−
√

3d
l

)

k
ν= 5

2
Matérn(d;σf , l) = σ2

f

(
1 +

√
5d
l

+ 5d2

3l2

)
exp
(
−
√

5d
l

)

rational quadratic kRQ(d;σf , l) = σ2
f

(
1 + d2

2l2α

)−α

neural network [16] kNN(xp,xq) = σ2
f arcsin

(
2x̃T

p P x̃q√
(1+2x̃T

p P x̃p)(1+2x̃T
q P x̃q)

)

additive [8] kADD(xp,xq, R) =∑
r∈R σ

(r)
f

∑
1≤i1<i2<···<ir≤D

(∏r

d=1 k
(id)
(

x(id)
p ,x(id)

q

))

Table 2. Experimental settings of GP. σn and l apply to all covariances. σf applies
to all except the kADD, in which σ(r)

f scales each degree r ∈ R, R = {1, 2, 3, 5, 7, 10} ∩
{1, . . . , D} of interaction separately. σ(r)

f and its upper bound were initialized propor-
tionally to

(
D
r

)
.

GP hyperparam initial value constrains
σn 1e−2 [1e−3, 1e1]
l std(X) [1e−2, 1e2]
σf

std(y)√
2 [1e−2, 1e6]

Table 3. Experimental settings of RF: ntree – number of trees in RF, Nt, nD – number
of tree points and dimensions, N – number of RF points, D – input space dimension,
errGrad – gradient error gain. Split methods and error gain functions err are tested
using full-factorial design, ntree, Nt, and nD are sampled.

RF param bagging boosting
err {errMSE, errvar, errNN} errGrad
split {CART, SECRET, OC1, SUPPORT, PAIR}
ntree {64, 128, 256, 512, 1024}
Nt d{0.25, 0.5, 0.75, 1} ·Ne
nD d{0.25, 0.5, 0.75, 1} ·De
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f3 basic.objective_min
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f15 cm_convexity.convex_soft
f31 dispersion.ratio_mean_25
f35 ela_distribution.skewness
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Figure 1. Classification tree demonstrating the influence of ELA features on model
suitability. Light blue: Gaussian processes. Light pink: Random forests. The RF mod-
els use the notation RFensemble method

∣∣split method
error gain , where bag = bagging, gb = gra-

dient boosting, and Grad = gradient error gain. The GP models use the notation
GP
∣∣ covariance functionARD , where ARD = automatic relevance determination (scaling

in each dimension separetely).
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1 Introduction

Imitation learning provides an attractive approach to communicate complex
goals to autonomous systems in domains where explicit reward functions are
unavailable, tedious to specify or rely on substantial or high-cost expert knowl-
edge. Standard Imitation Learning implicitly assumes that the embodiment of
the learning agent and the teacher are either the same or intuitively compatible
from the perspective of the demonstrator. In this work, we consider control tasks
which violate these assumptions and propose a framework for estimating embod-
iment adaptors using human feedback expressed through pairwise preferences
over control trajectories.

2 Background

Recent advances in reinforcement learning (RL) have largely been driven by
scaling algorithms well understood in simple task domains to complex, high-
dimensional problems using deep neural networks for value function approxima-
tion [6] and policy learning [5]. In the standard formulation of a reinforcement
learning problem, often posed as a Markov Decision Process (MDP), one as-
sumes access to a reward function R : S × A → R which associates a scalar
reward with agent actions a ∈ A taken in states s ∈ S. The agents’ objective,
therefore, is to maximize it’s cumulative reward. In many well posed control
tasks, this objective may be straightforward to specify: the score of a game, the
goal configuration in robotic manipulation tasks, forward velocity for walking or
crawling.

Complementary to RL, Imitation Learning provides an approach for learning
a control policy without an explicit reward function. This approach is desirable in
problems domains where a concise goal statement may be challenging to express
[1], [2]. Prior work has also explored imitation learning to improve the sample
efficiency of reinforcement learning [3], [4]. Conventional approaches to imitation
learning, however, fundamentally rely on the availability of demonstrations of
expert control in the form of observation, action tuples. Demonstration data may
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be acquired through teleoperation 1 or kinesthetic teaching 2. In the former case,
the imitator and the demonstrator are assumed to have the same embodiment,
eg. their state and action spaces are assumed to be consistent. In the latter, the
demonstrator must inhabit the same physical space as the embodied agent and
must be able to efficiently pose and manipulate its effectors.

Many complex control tasks may exhibit incompatibilities between the em-
bodiments of the demonstrator and the imitating agent. Consider for instance
a robotic arm we may wish to train to perform household tasks such as prepar-
ing food; pose estimates of a human demonstrator’s arm will yield sequences of
actions with different degrees of freedom and dynamics than the imitating arm.

3 Methods

Our proposed approach takes two stages: In the first stage the human demonstra-
tor provides undirected feedback to the agent to optimize a policy πα : AH → A`
which translates between the demonstrators action space AH and agent’s action
space A`. This is achieved through trajectory preference learning [1], however
in our formulation preferences are assigned to the trajectory that best matched
the demonstrators’ desired action. Formally, we state that a trajectory τ1 is
preferred, denoted � to τ2 following a reward function r known only to the
demonstrator if:

τ1 � τ2 ≡
∑

t

r(a1t , πα(a1t )) >
∑

t

r(a2t , πα(a2t )) (1)

After each interaction, a pairwise preference is assigned between the two tra-
jectories and an reward function approximation r̂ is estimated using the method
specified in [1]. The embodiment adaptation policy is then subsequently trained
to maximized r̂ using standard reinforcement learning. After learning an embodi-
ment adaptation policy, the second phase uses this mechanism to learn a behavior
policy πβ from translated demonstrations using (for instance) behavioral cloning.
In this simple formulation, the optimal policy given expert demonstrations D
is the policy that minimizes the divergence between πβ and the expert actions
translated by πα; assuming continuous actions, we may define this objective in
terms of the quadratic loss:

π∗β = arg min
πβ∈Πβ

E(s,a)∼D[(πα(a)− πβ(s))2] (2)

We propose two proof of concept embodiment translation tasks to demon-
strate the utility of our method: a classic gridworld with discrete state and action

1 The demonstrator directly controls the agent which records action selections for
imitation

2 The demonstrator physically manipulates an embodied agent by applying force to
its effectors; demonstration in these scenarios may be, for instance, resultant torques
on the joints of a robotic arm
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spaces and the continuous control problem lunar lander. In the lunar lander task,
for instance, the human demonstrator must select thrust directions using the up,
left and right keys; it is observed in [7] that humans tend to fail on this task.
Distinct from previous work, we hypothesize that this is an unintuitive interface
for a human operator to demonstrate correct behavior. A more natural inter-
face, perhaps, may be a joystick-like interface. We apply our method to learn an
embodiment adaptor policy πα which translates continuous forces applied to a
joystick to sequences of discrete thruster pulses which are compatible with the
imitator’s embodiment.
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