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Abstract. Uncertainty sampling is one of the main approaches in deep
active learning. In the early phase of uncertainty sampling, uninforma-
tive instances are usually selected due to missing exploration of the data
space. This can result in a poor quality model leading to poorer ac-
quisitions and further leading to a poorer model. Clustering algorithms
can analyze large amounts of unlabeled data in an unsupervised way.
A cluster center can be seen as the representative of its cluster and is
often highly useful for querying the label from the oracle. Therefore, we
propose an algorithm that enables the model to explore the data space
at the initial stage using pre-clustering, and enhances the exploration
of uncertainty sampling continually based on a combination of uncer-
tainty and utility metrics. The preliminary experimental results show
that the proposed algorithm supports balance and imbalanced data sce-
narios. Besides, our algorithm can achieve a higher classification accuracy
compared to baselines methods, even under fewer annotations.

Keywords: Active Learning · Deep Active Learning · Bayesian Neural
Network · Uncertainty Sampling · Clustering.

1 Introduction

Deep learning (DL) has a strong learning ability to process high-dimensional
data and extract features automatically [24], while DL is often very greedy for
data [11]. Active learning is concerned with reducing annotation costs effectively
and ensuring a predetermined level of accuracy. However, a major challenge in
AL is its lack of scalability to high-dimensional data [29]. Therefore, an approach
that combines DL and AL will significantly expand their application potential.
This combined approach, referred to as deep active learning (DAL), mainly con-
tains two parts: the AL query strategy on the unlabeled data set and the DL
model training [24]. In the pool-based AL scenario, the selection strategy chooses
the best sample based on the evaluation and ranking of the entire large data set.
The annotated samples are used to train the model and improve the data ac-
quisition for the next AL iteration. The uncertainty-based approach is one of
the most common pool-based methods in the application, because it is simple in
form and has low computational complexity [24]. Many DAL [1, 10, 22, 23] meth-
ods use the uncertainty sampling (US) strategy directly. However, there are still
two challenges that have to be overcome:
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– Unreliable uncertainty at the initial AL phase Uninformative in-
stances are usually selected based on unreliable uncertainty due to an unclear
sense of the data space at the early stage. This can result in a poor quality
model leading to poorer acquisition and further leading to a poorer model [3].

– Uncertainty sampling lacks exploration For uncertainty sampling in
DAL context, [6, 14, 12] utilize batch acquisition and query the top n in-
stances with the highest scores. However, it is likely to select a set of information-
rich but similar samples [33]. It leads to insufficient exploration, i.e., the
knowledge regarding the data distribution is not fully utilized [24], which
makes low DL model training efficiency and high annotation cost.

To address the first challenge, it is crucial to find the most representative
instances from the large unlabeled data set at the initial AL phase. The general
method [7] is to use random selection (RS) at the beginning of the training
process for exploration. However, this method could fail for imbalanced data set
because the selected instances are less representative, and most of them locate
dense areas [30]. The model can deeply learn the true data space only when
sufficient labels of data are available. However, it will increase annotation cost.
Unsupervised learning algorithms can analyze large amounts of unlabeled data.
For example, the K-Means [26] algorithm is one of the most common clustering
algorithms for knowledge discovery in data mining. The cluster information is
helpful for AL in two aspects: (1) The instances located in the center of clusters
are more representative than the others and should be labeled firstly; (2) Samples
in the same cluster are likely to have the same label [21].

For the second challenge, a feasible solution is to use a hybrid query strat-
egy to enhance the exploration of US. The similarity between samples is a
method [21, 15] to measure the similarity amongst instances by calculating the
feature vectors’ distance between each other. Similar to US, these algorithms
are often only good at exploitation, i.e., the learners tend to only focus on in-
stances near the current decision boundary [24]. But in the opposite direction, we
can also utilize the similarity to exclude similar samples. After sorting a batch
of instances based on the uncertainty through US, we could filter out similar
instances to improve the exploration of selection strategy.

To overcome the challenges mentioned above, the two core ideas of our pro-
posed algorithm are: (1) At the initial phase, we label the instances closest to
cluster centers to train the model for estimating reliable uncertainty. (2) The se-
lection of the most informative instance depends on two strategies, uncertainty
and utility. The uncertainty evaluates the epistemic uncertainty of Bayesian
Neural Network (BNN) [6, 7] to an instance. The utility filters out the instances
which are similar to the already labeled instances. Since US lacks exploration
in the data space, the utility metric helps the model discover some valuable
instances far away from the current decision boundary. Therefore, we propose
our algorithm Uncertainty and Utility sampling with Pre-Clustering (UUPC).
Compared to the baselines, our algorithm can achieve a higher classification
accuracy under fewer annotations.
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The remainder of this article starts with a summary of the related work. The
details of the algorithm and the experiments are introduced in Section 3 and 4
respectively. This article is closed with a conclusion and an outlook on our future
work in this field.

2 Related Work

The uncertainty-based query strategies (e.g., Margin Sampling and Entropy) in
the DAL scenario are widely used [6, 14, 12] because it is convenient to combine
with the output of the DL model. Traditional DL requires a large amount of
labeled data to obtain reliable uncertainty estimation. In the DAL scenario with
large unlabeled data, epistemic uncertainty is particularly valuable because it
allows the model to assess its lack of knowledge. For this reason, a method that
combines deep Bayesian neural network with US has been proposed [7, 12, 22].
However, as analyzed in Section 1, US could select uninformative instances at
the initial AL phase and lack exploration. Therefore, some hybrid query strate-
gies are developed [32, 34], taking into account the uncertainty and diversity of
samples. Exploration-P [32] utilizes a deep neural network to obtain the uncer-
tainty and the similarity between the samples. Besides, this method uses RS
strategy for exploration purposes in the early AL phase. The combination of AL
and K-means clustering has been researched in previous works [13, 21] to find the
most representative instances. DBAL [34] presents a hybrid query approach that
utilizes the K-means clustering algorithm to explore the diversity of instances in
each mini-batch. Contrary to [34], which performs clustering in each AL itera-
tion, our approach annotates labels based on cluster centers only at the initial
AL phase to pretrain the BNN model. Thus, it can avoid labeling samples re-
peatedly in the same cluster. Similar to select the most representative instances
by clustering, the core set approach is also a representative query strategy. The
basic idea is constructing a core set to represent the distribution of the feature
space of the entire original data set, thereby reducing the labeling cost of AL [27,
31]. However, the core-set approach requires building a large distance matrix on
the unlabeled data set, the search process is computationally expensive especial
on the large data set [2].

3 Problem Formulation and Algorithms

In the general classification, one sample is described by x ∈ X and its label from
C classes with a corresponding label y ∈ Y = {1, · · · , C}. The clustering informa-
tion can be described explicitly by introducing the cluster label k ∈ {1, · · · ,K},
where K is the number of clusters in the data. In the pool-based AL, we define
U = {x1, · · · ,xN} as an unlabeled set with N samples. Labels are not available
at the beginning but can be annotated by the oracle. The query strategy selects
an instance x ∈ U and asks the oracle for the corresponding label y ∈ Y. The
newly labeled instance is removed from the unlabeled set U ← U\x. We add the
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instance with its label to the labeled set L ← L ∪ (x, y), and train supervised
learning models such as SVM and DNN on L.

3.1 Pre-Clustering at initial AL Phase

Selecting the most representative instances from the unlabeled data by labeling
cluster centers is heavily dependent on the quality of clustering results. In K-
Means, the crucial parameter that affects the goodness of clustering results is the
number of clusters, which should be optimized. The evaluation without any labels
must be performed using the model itself. The elbow method [16] is the most
popular heuristic approach, which calculates the sum of squared distances (SD)
from each point to its assigned center. The unsupervised evaluation scores such as
Silhouette Coefficient (SC) [25], Calinski-Harabasz Index (CHI) [4] and Davies-
Bouldin Index (DBI) [9] could also be applied to the elbow method. We will
calculate multiple cluster scores to determine the optimal number of clusters Ko.
To optimize SC and CHI, we have to maximize the scores, while lower SD and
DBI indicate a model with better defined clusters so they must be minimized.
We take the reciprocal of SC and CHI to unify the optimization direction. The
weighted score of pre-clustering (PC) is calculated by following:

Score
PC

(K,U) = α1 SD (K,U) + α2 DBI (K,U)

+ α3
1

SC (K,U)
+ α4

1

CHI (K,U)
+ λK.

(1)

The weights of each score are α1,··· ,4, and the sum is 1. The α1,··· ,4 could be
selected by expert knowledge, or in the absence of detailed expert knowledge,
like in the experiment in Section 4, all weights are selected to be the same value.
In our definition, K must be equal or greater than C. For example, MNIST [19]
requires at least 10 clusters, one per class. Kmax indicates the maximum budget
of annotations at the initial AL phase, and we expect that C < Kmax � N .
Since the above four cluster evaluation scores have different scales, in practice,
we calculate a set for each type of score (SD, DBI and reciprocal of SC and CHI)
from C to Kmax and normalize each set to 0-1 range. Then we add the four scores
to obtain a set of Score

PC
(K,U), where K ∈ {C, . . . ,Kmax}. The larger the K, the

smaller the Score
PC

, which means that the more refined clustering. However, the la-

beling cost must be considered because the oracle has to annotate every instance
closest to the center in each cluster. Therefore we append λK into Score

PC
(K,U)

as the regularization, where λ is the weight of regularization and proportional
to the cost of an annotation. Setting a proper value of λ is dependent on the
application scenario and requires expert experience. The Bayesian information
criterion (BIC) and the Akaike information criterion (AIC) could determine the
appropriate number of clusters without tuning regularization [28, 8]. But they
can be applied only if we extend the clustering algorithm beyond K-Means to
Gaussian Mixture Model (GMM). Since this paper utilizes pre-clustering by K-
Means, BIC and AIC will be researched in future work. The optimal number of
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clusters Ko can be described as follows:

Ko = argmin
K∈{C,··· ,Kmax}

Score
PC

(K,U) (2)

Assume that the information about the class label y is encoded in the cluster
k. The set of elements in cluster k is ck. Once the data probability distribution
of clusters p(x ∈ ck) and the class yk of each cluster center xk are known, we can
infer the probability distribution of class p(y|x ∈ ck) with respect to all samples
in ck [21]. However, using the cluster center to annotate all instances’ labels is
not reliable because the samples located at the intersection of clusters are easily
misclassified. In contrast with refining smaller clusters [21], our method only uses
the pre-clustering to pretrain the model. In detail, we only label the instances
closest to each cluster center by oracle p(yk|xk, k) and put them into the labeled
data set L = {(xj , yj) | j ∈ {1, · · · ,Ko}}, where Ko is optimal number of
clusters. At the initial phase of our approach, the BNN will learn the initial
labeled data set to get optimal posterior parameters for reliable uncertainty
estimation. Then the oracle will label the most informative instances based on
the combination of the following two selection functions: uncertainty and utility.

3.2 Uncertainty-Utility Selection Strategy at AL Phase

The BNN can be defined as f (x,θ). p (θ) where θ ∈ Θ is a prior on the parameter
space Θ. The likelihood p (y|x,θ) is determined by softmax (f (x,θ)). The goal
is to obtain the posterior distribution over θ from labeled training set L:

p (θ|L) =
p (L|θ) p (θ)

p (L)
(3)

The θ1, . . . ,θT are sampled T times to get an monte carlo estimate of the pre-
dictive probabilitiy distribution on the label y as the average regarding a new
unlabeled instance x∗ ∈ U :

p̂(y|x∗,L) =
1

T

T∑

t=1

p(y|x∗,L,θt) (4)

Equation 4 describes the general uncertainty estimation of BNN, and it includes
both the epistemic and aleatoric uncertainty of the prediction y. In our case, we
calculate the entropy over the predicted class probabilities of a new instance to
estimate the uncertainty score as given in the numerator of Eq. 5. In each AL
iteration, the scores of instances in U are normalized into a 0–1 range, where 1
is the most uncertain score, indicating that being annotated is often very useful.
The function Uncr (x∗) can evaluate the uncertainty score for each instance in
U :

Uncr (x∗) =

−
C∑
c
p̂ (y = c|x∗,L) log2 (p̂ (y = c|x∗,L))

log2 (C)
. (5)
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As mentioned in Section 2, the uncertainty metric requires to be enhanced
with exploration of the data space. Although in the initial stage, we use pre-
clustering to help BNN to obtain reliable uncertainty estimations quickly, some
valuable instances are far from the current existing decision boundary. Therefore,
we define a utility metric to enhance the exploration of US continually. We define
the Euclidean distances between two instances x1 and x2 as Dis (x1,x2). The
similarity between the instance x∗ to class c is defined as the median distances
of x∗ to all instances of c in the L. The formulation can be written as:

Sim (x∗, c) = median({Dis (x∗,x) , where (x, y) ∈ L and y = c}). (6)

The standard deviation of the similarities between the instance and each class
represents the trend of which class it belongs to. The higher standard deviation
indicates the instance is likely to be classified to one single class. When the
standard deviation is lower, the instance is located in the intersection of multiple
classes, and annotation by the oracle could be more beneficial. For a paired
comparison with uncertainty, we transfer the optimization task of this score into
a maximization problem. The scale of uncertainty score is 0-1. Hence in practice,
we calculate the utility score of each instance in a batch and normalize the entire
batch of utility scores to the same scale. Eq. 7 shows the method of calculating
the utility of a single instance x∗.

Utility(x∗) =
1

std ({Sim (x∗, c1) , · · · Sim (x∗, cC)}) (7)

Uncertainty-utility (UU) score is defined as follows:

Score
UU

(x∗) = γ1 Uncr (x∗) + γ2 Utility (x∗) (8)

where γ1 and γ2 are in 0-1 range and control the weights of two selection metrics
separately. The weights could be selected by expert knowledge, or in the absence
of detailed expert knowledge, γ1 and γ2 are each selected equal to 1. The higher
score, indicating the more worthy of being annotated.

3.3 Batch-based UUPC Algorithm

With batch training, our method could have more efficient training on large data
sets: (1) Clustering, such as K-Means, passes through the entire data set to ob-
tain the centers. The training process is time-consuming, which is proportional
to the amount of data. The mini-batch-based K-Means [26] uses a batch-based
method to cluster large data sets to reduce computation costs. (2) For traditional
uncertainty sampling, each iteration requires uncertainty estimation for all in-
stances in U . In DAL scenario, we use batch-based sample querying to improve
training efficiency [24].

At each acquisition step, we score a batch of candidate unlabeled samples B ⊆
U , where B = {x1,x2, · · · ,xb} and b refers to the batch size. Based on the Score

UU
,
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Algorithm 1 UUPC Algorithm for Batch Training

Input: Unlabeled data set U ← X , initial labeled set L ← Ø, one batch data B ⊆ U
with b samples is selected randomly, the process of batch sampling is described as
BatchSampling (U , b), the maximum number of AL iterations for pre-clustering phase
Bpc and for UU sampling phase Buu, Nuu instances are annotated per batch.
Output: Optimized number of cluster Ko, labeled data set L, BNN model f (x,θ)

1: Ko ← argmin
K∈{C,···Kmax}

Score
PC

(K,U)

2: iter ← 0
3: while iter < Bpc do
4: Biter ← BatchSampling (U , b)
5: {xiter

1 , · · · ,xiter
k } ← K-Means

(
Biter,Ko

)

6: if {xiter
1 , · · · ,xiter

k } == {xiter−1
1 , · · · ,xiter−1

k } then
7: Break
8: iter ← iter + 1

9: L ← {(x1, y1) , · · · , (xk, yk)} ← Labeling({x1, · · · ,xk})
10: {θ1, · · · ,θT } ← Training (f (x,θ) , y), where (x, y) ∈ L
11: iter ← 0
12: while iter < Buu do
13: Biter ← BatchSampling (U , b)
14: S ← Ø
15: while i < Nuu do
16: x∗i ← argmax Score

UU
(x) , where x ∈ Biter\S

17: S ← S ∪ x∗i
18: L ← L ∪ Labeling (S)
19: U ← U\S
20: {θ1, · · · ,θT } ← Training (f (x,θ)), where x ∈ L
21: if U == Ø then
22: Break
23: iter ← iter + 1

we select the top n candidate instances with the highest scores S = {x∗1, · · · ,x∗n}
where n ≤ b. This problem can be formulated as follows:

x∗i = argmax
x∈B\{x∗

j |j<i}
Score
UU

(x) (9)

The UUPC algorithm is shown in Alg. 1. In line 1 of Alg. 1, we select the
optimized number of clusters Ko using Eq. 2. In lines 2-8, we choose batches
randomly to train the mini-batch-based K-Means model until the positions of
cluster centers are not changed. In line 9, the instances, which are the closest to
the cluster centers, will be annotated by the oracle and moved into L. Line 10
means training the BNN based on L to help the model understand the data space
at initial AL phase. In lines 11-23, we calculate Score

UU
(see Eq. 8) on the batches

data iteratively and annotate the top Nuu instances per batch. The annotated
instances are moved to L to update the BNN model. We stop the process when
the budget is exhausted.
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Fig. 1: Unsupervised cluster number evaluation by Score
PC

on artificial data set

and MNIST using Eqs. 1 and 2. The four weights α1,··· ,4 of Score
PC

are set to the

same value of 0.25. The optimal number of clusters Ko locates at the lowest value
of Score

PC
. The red vertical dash line indicates the position of the optimal Ko.

4 Experimental Evaluation

To evaluate the quantitative performance of UUPC, we conduct experiments on
artificial and real-world data sets. The following selection algorithms are com-
pared. Besides random selection (RS) from a batch of instances and uncertainty
sampling with entropy (US), we also use Random Sampling strategies at the ini-
tial AL phase before Uncertainty Sampling (RSUS). For UUPC, Ko instances
are selected by pre-clustering at initial AL phase. In order to make a fair com-
parison between our approach and RSUS, Ko instances are randomly selected as
initial L in the RSUS method. To verify the utility metric, we conduct another
strategy UUPC-UNCR, where only the uncertainty is considered, to assess the
importance of the utility metric. For UUPC, we set the weights empirically in the
Score
UU

as γ1 = 1.0 and γ2 = 0.7. In these experiments, we use a simple Bayesian

dropout approximation neural network with multiple fully connected layers: 2
dense hidden layers with 250 and 100 units, ReLU activation and dropout, and
an output layer. The dropout probabilities are set to 0.3 and 0.5 respectively.
The θ1, . . . ,θT are sampled ten times to obtain the average probability distri-
bution on the label for each candidate instance, i.e., T is set to 10 in Eq. 4.

4.1 Artificial Data Set

The first experiment is inspired by [17]. Based on a low dimensional and small
artificial data set that could visually show the acquisition behavior of different
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Fig. 2: Visualization of acquisition behavior for different selection strategies
on artificial data set. The green color indicates how useful a selection strategy
considers a region. Darker areas are considered more valuable than brighter areas.
The corresponding selection strategy has selected ten labeled instances marked
with gray circles or squares. For UUPC, UUPC-UNCR and RSUS, the first
selected five instances at AL initial phase are marked as gray squares. Thereby,
one can see the current decision boundaries illustrated by black lines and how
the usefulness is spatially distributed to select the next instance for labeling.
The artificial data generation and visualization method are inspired by [17].

selection strategies. Through visualization, the performance of UUPC could be
visually verified when it utilizes pre-clustering in the initial stage of AL and
later selects samples through Score

UU
. We also use F1 scores to quantitatively

check whether our proposed method can outperform other baseline methods.

The artificial imbalanced data set contains 100 two-dimensional instances
with two classes (60 blue diamonds and 40 red rectangles). We put the whole
artificial data set as one batch and select an instance with most information
from U at each AL iteration. One side the data size is too tiny another side it
can compare with other traditional AL algorithms. Fig. 2d shows that US only
has one unilateral decision boundary on the left side, which lacks exploration.
The result of RS is not shown in Fig. 2 because it is unstable and entirely de-
pends on random seeds. The optimized number of pre-clustering Ko is 5 (see
Fig. 1a). For UUPC, UUPC-UNCR and RSUS, the initial selected five instances
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marked as gray squares are distributed in Figs 2a, 2b, and 2c respectively. In the
UUPC and UUPC-UNCR methods, the initially selected instances are located
in the five cluster centers representing the whole data space. Selecting the most
representative instances could help the BNN model to estimate reliable uncer-
tainty. However, similar to RS, the initial random selection strategy in RSUS
relies on random seeds. Fig. 2c illustrates one of the worst cases of RSUS be-
cause all initial randomly selected instances belong to the blue diamonds class.
This results in a poor quality model leading to poorer acquisition. The results
in Figs. 2a and 2b prove that UUPC could increase the F1 score by 4% com-
pares with UUPC-UNCR. Furthermore, we compare the results of the other two
methods xPAL [17] and PAL [18] visually1. Since these two methods did not use
BNN as a classifier, it might affect the output of their selection strategy. Here
we only simply show the distribution of the labeled points. As shown in Fig 2e,
our method could get similar F1 score as xPAL.

4.2 Real Data Set: MNIST

In the above experiment, we visualize the behavior of different selection strate-
gies on low-dimensional artificial data. This experiment aims at evaluating the
UUPC performance on real-world balanced and imbalanced data sets with high
dimensions. MNIST 2 [19] data set includes 10 handwritten digits. The data set
contains 20,000 training images and 10,000 testing images with the shape 28×28.
As shown in Fig 1b, the hyperparameter of pre-clustering Ko is 50. The batch
size is 1000, and we select the top 10 highest-scoring instances from each batch.
We repeat the following experiments 20 times and evaluate the performance of
different methods on the test data sets through the F1 score.

Fig. 3a illustrates the F1 scores of the test set with the different amount of
annotations on balanced data set. We set the whole training set of MNIST to U
and label 5% (1000 annotations) unlabeled instances in U . Same as what [3, 17,
24] pointed out, US does even worse than RS when the number of annotations is
smaller than 200 due to unreliable uncertainty estimations. UUPC and UUPC-
UNCR outperform other methods at the initial phase because of pre-clustering.
Due to only uncertainty is considered in UUPC-UNCR, the advantage of pre-
clustering decays gradually after 200 annotations. When the number of labeled
instances exceeds 250, the F1 score of RS increases slower than UUPC and US.
It indicates that the uncertainty estimation given by BNN gets more and more
important once sufficient annotations are available. UUPC could keep a higher
F1 score, which is up to 4.5% higher than other baseline methods, until the
number of the annotated samples is greater than 800.

Imbalanced data sets are very common in real-world applications. As a pre-
liminary experiment, we randomly drop 75% of samples of digits 5, 6, 7, 8,
9 in the training and test set, to assess the performance of the methods in

1 The algorithms of xPAL and PAL, as well as visualization presented in Fig. 2, are
implemented by Kottke et al. https://github.com/dakot/probal.

2 Obtained from https://colab.research.google.com.
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Fig. 3: Learning curves for MNIST data sets. Each plot shows the multi-class F1
score of UUPC and the competing algorithms on the test images after annotating
up to 5% instances from the balanced or imbalanced MNIST unlabeled data set.
The learning curve that reaches a high F1 score fast is considered best.

imbalanced data set. Similar to the experiment in the balanced data set, 5%
(630 annotations) unlabeled instances in U will be annotated. Since UUPC and
UUPC-UNCR use pre-clustering, the F1 score in the initial phase is still higher
than other methods presented in Fig. 3b. Due to selected instances are less rep-
resentative, and most of them belong to majority classes, the F1 score of RS
almost stops increasing after 300 annotations. It is worth noting that when the
number of annotations is less than 150, the F1 score of UUPC-UNCR is slightly
higher than that of UUPC, which means that when there are fewer annotations,
the utility criterion may introduce uninformative samples. One solution is to set
utility weight γ2 to 0 at the initial stage and increase its value corresponding to
the number of annotations dynamically. When the size of L is greater than 150,
the utility could enhance the exploration of the selection strategy and increase
classification accuracy significantly. Compared with other methods, the F1 score
of UUPC is 4.3% higher than other methods on average under the same amount
of labeling. In other words, our proposed method reduces the annotation cost by
33.1% on average but achieves the same performance as other baseline methods.

5 Conclusion & Future Work

The direct use of US in DAL could face two main challenges: the unreliable uncer-
tainty estimation in the initial AL phase leads to poor acquisitions and further
results in a poorer model, and the lack of exploration of US leads to insuffi-
cient diversity of samples. In this article, we propose an effective DAL algorithm
UUPC, which enables the model to explore the data space at the initial stage
using pre-clustering, and enhance the exploration of uncertainty sampling con-
tinually based on a combination of uncertainty and utility metrics. The method
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is assessed in preliminary experiments. The experimental results show that our
method outperforms the baseline methods in balanced and imbalanced data sets
under few annotations.

This work can be further researched in these directions: (1) In the current
preliminary experiment, we only apply a tiny three-layer linear network and flat-
ten the image data without considering image features. Gal et al. [7] proved that
CNN could improve the recognition accuracy under the same number of anno-
tations. It is necessary to extract features through CNN from high-dimensional
data in future experiments. (2) The batch-based K-Means algorithm is applied
in pre-clustering to improve computational efficiency. It is worth using Autoen-
coder with CNN layer to reduce dimensionality and extract the most informa-
tive features before clustering in further research. (3) At present, we only do
preliminary experiments on artificial and MNIST data sets to verify our pro-
posed method’s feasibility. Further evaluations are needed on more data sets in
the future. Besides, we will compare other existing selection strategies in DAL
in further research. (4) UUPC and others mentioned methods above might fail
in anomaly detection scenarios. One potential solution is performing isolation
forest [20] or DBSCAN [5] at the initial stage of AL to get the rough decision
boundary and then refining the result through uncertainty-utility (UU) strat-
egy. (5) The method of obtaining the optimal number of clusters proposed in
Subsection 3.1 is still a heuristic algorithm. In different application scenarios,
estimating the weights of each sub-score and regularization weight λ in Eq. 1
relies on expert experience. The Bayesian information criterion (BIC) and the
Akaike information criterion (AIC) could also determine the appropriate number
of clusters [28, 8]. The advantage is that they originally contain regularization
and do not require experts to set additional weights.
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