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IAL Content
Foundations of Active Learning

• The Motivation for Active Learning (AL)

• Basic Workflow of Active Learning

• The main components of Active Learning

• Different types of active learning

• What is the benefits of AL?

• Simple AL example
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IAL The Motivation for Active Learning

• Recently, there is huge amount of free unlabeled data (i.e., raw data) that could be
collected (e.g., from IoT devices like sensors), but labeling data is
— time-consuming
— expensive
— difficult to collect

• This labeling problem could be solved by reducing the size of the training data and
keeping only the high-quality training data (how?)

• The active learning (AL) technique offers searches within the unlabeled data for
the most informative and representative points for labelling/annotating them
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IAL The main components of Active Learning

• Data: (i) unlabeled data (DU), which represents the pool from which a new point is
selected and (ii) labeled data (DL) is used to train a model (h)

• Learning algorithm (h): The learning model (h)is trained on DL. this component is
mostly used to evaluate the current annotation process and find the most
uncertain instances/regions

• Query strategy (or acquisition function): This uses a specific utility function for
evaluating the instances in DU for selecting and querying the most informative and
representative point(s) in DU

• Annotator/labeler/oracle/Expert: Who annotates/labels the queried unlabeled
points
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IAL Different types of active learning

• Active labelling: A model actively selects and requests labels for specific data
points from a human annotator in order to improve its performance
— To build a spam email classifier to automatically identify spam emails without having

labelled dataset of emails (as spam or not), instead of labeling the entire dataset
manually, active labeling to make the process more efficient
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IAL Different types of active learning

• Active labelling: A model actively selects and requests labels for specific data
points from a human annotator in order to improve its performance
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IAL Different types of active learning

• Active labelling: A model actively selects and requests labels for specific data
points from a human annotator in order to improve its performance

• Active feature acquisition: Here, the model actively selects and acquires
additional features (input variables) to improve its performance
— To build a face recognition model from images, we could extract a lot of features. Let

we build a model based on only extract some features from eyes. After training the
model and analyzing the feature importance scores, we find that adding (extracting)
the ”nose” features has the potential to improve the model
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IAL Different types of active learning

• Active labelling: A model actively selects and requests labels for specific data
points from a human annotator in order to improve its performance

• Active feature acquisition: Here, the model actively selects and acquires
additional features (input variables) to improve its performance

• Active class selection: Instead of requesting labels for existing instances, or
explicitly querying the feature space by creating instances to be labeled by an
annotator, ACS create/generate instances for a particular class
— To train a model in smart factories to classify two classes (negative and positive), the

initial training data may be balanced and let we assume that the negative class is
more critical; hence, it is better to actively generate and annotate more negative
items to improve the model’s performance in identifying the items of this class
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IAL What is the benefits of AL?

• reduces the need for large labeled datasets by selecting the most informative data
points for labeling⇒ ”Cost+time saving”

• can be particularly beneficial when dealing with limited resources, as it allows for
the targeted collection of valuable data⇒ ”Scalability”

• lead to faster model convergence by actively selecting informative data points,
allowing the model to learn more quickly⇒ ”Faster Model Convergence”

• results in models with better performance, as they are trained on the most
valuable and informative data points⇒ ”Improved Model Performance”

• reduce annotation bias by actively seeking diverse examples, leading to a more
balanced and representative dataset⇒ ”Reduced Annotation Bias”
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IAL Simple AL example
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IAL Simple AL example

Tharwat, A., & Schenck, W. (2023). A Survey on Active Learning: State-of-the-Art, Practical Challenges and Research Directions. Mathematics, 11(4), 820.

The code is available here: https://github.com/Eng-Alaa/AL_SurveyPaper/blob/main/AL_IrisData_SurveyPaper.ipynb
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IAL Beyond pool-based scenarios

Aims
• Broadening view on active learning

• Overview on different variants of the active learning task

• Pointers to surveys / key papers for each variant

• Challenges/caveats and exemplary approaches
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IAL Processing Scenarios: Passive Learning
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Passive Learning
• Training set L of labelled data available

• no control over labelling (no additional labels)
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IAL Processing Scenarios: Pool
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• Labelled instances pool→ training set
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IAL Processing Scenarios: Pool
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IAL Processing Scenarios: Query Synthesis
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Query Synthesis Scenario
• No pool

• Ad hoc generation of queried instances

• Membership query: Query class membership
of generated instance

• See Angluin, “Queries revisited”, 2004
(introduction)

• Challenge: creating meaningfull instances
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IAL Processing Scenarios: Query Synthesis
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Hybrid Query Synthesis/Pool Scenario
• Aim: creating meaningfull instances

• Combination with pool-based AL: Wang
et al., “Active learning via query synthesis and
nearest neighbour search”, 2015
— given a (too) large pool of unlabelled data
— synthesize instance close to decision boundary
— select the nearest neighbouring real instance
— faster than pool-based AL, meaningful queries
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IAL Processing Scenarios: Stream

Processed
Data

Time T

Stream-Based Selective Sampling Scenario
• Sequential arrival, no repeated access
• Online active learning as synonym

• No/few initial labels
• Possibly infinite number of instances

• Efficient processing and limited storage

• Non-stationary distributions (concept drift)
• Adaptation (forgetting) needed

• “Big Data” is often streaming data
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IAL Processing Scenarios: Stream
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IAL Processing Scenarios: Stream
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Recommended literature
• Cacciarelli and Kulahci, “A survey on online
active learning”, 2023 (survey)

• Zliobaitė et al., “Active Learning With Drifting
Streaming Data”, 2013 (concept drift)

• Kottke, Krempl, and Spiliopoulou, “Probabilistic
Active Learning in Data Streams”, 2015 (budget
management)

• Pham et al., “Stream-Based Active Learning for
Sliding Windows Under Verification Latency”,
2022 (verification latency)
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IAL Processing Scenarios: Stream

Time T

Old Chunk New Chunk Future Chunk

Time T

Instances arrive one-by-one

Chunk-based processing
• Split data chronologically into chunks
• AL on each chunk is similar to pool-based AL

• Often, ensemble with one new classfier per
chunk is trained a

• Alernative: Clustering-based approaches b

a E.g., Ryu et al., “An Efficient Method of Building an Ensemble of
Classifiers in Streaming Data”, 2012; Zhu et al., “Active Learning
From Stream Data Using Optimal Weight Classifier Ensemble”,
2010; Zhu et al., “Active Learning from Data Streams”, 2007
b E.g., Krempl, Ha, and Spiliopoulou, “Clustering-Based Opti-
mised Probabilistic Active Learning (COPAL)”, 2015; Ienco et al.,
“Clustering Based Active Learning for Evolving Data Streams”,
2013 67



IAL Processing Scenarios: Stream

Time T

Old Chunk New Chunk Future Chunk

Time T

Instances arrive one-by-one

Instance-wise processing
• Instances arrive one-by-one
• Decision to query or not must be taken at once

• Budget: Trade-off between spatial and
temporal usefulness a

a See Kottke, Krempl, and Spiliopoulou, “Probabilistic Active
Learning in Data Streams”, 2015
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IAL Scenarios: Stream: Concept Drift

Categorizing Drift

• Affected distribution: P(X, Y), P(X), P(Y), P(Y|X), P(X|Y)

• Smoothnes of concept transition: sudden shift vs. gradual drift

• Recurring or singular contexts

• Systematic (change patterns) or unsystematic

• Real or virtual

See e.g., Krempl et al., “Open Challenges for Data Stream Mining Research”, 2014;
Žliobaitė, Pechenizkiy, and Gama, “An Overview of Concept Drift Applications”, 2016;
Webb et al., “Understanding Concept Drift”, 2017.
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IAL Scenarios: Stream: Concept Drift

Categorizing Drift
• Affected distribution: P(X, Y), P(X), P(Y), P(Y|X), P(X|Y)

• Smoothnes of concept transition: sudden shift vs. gradual drift

• Recurring or singular contexts

• Systematic (change patterns) or unsystematic

• Real or virtual
See e.g., Krempl et al., “Open Challenges for Data Stream Mining Research”, 2014;
Žliobaitė, Pechenizkiy, and Gama, “An Overview of Concept Drift Applications”, 2016;
Webb et al., “Understanding Concept Drift”, 2017.
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IAL Scenarios: Stream: Self Lock-In Problem

Motivation
Simply using static (iid) strategies fails

• Example: Uncertainty sampling

• Error is never even noticed!

• Active learner (self) lock-in
on an outdated hypothesis

• Anywhere, anytime drift can occur
Zliobaitė et al., “Active Learning with
Evolving Streaming Data”, 2011
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IAL Scenarios: Stream: Challenges

Pool Active Learning
• Where to buy instances (spatial usefulness)?

— Balance Exploration and Exploitation in the dataspace

Stream Active Learning

• Where to buy labels (spatial usefulness)?
• Consider Drift

— Labels might change over time and have to be validated
— Lifetime of labels

• When to buy labels (temporal usefulness)?
— Balance Exploration and Exploitation in time
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IAL Scenarios: Stream: Spatial Usefulness

Where to buy labels?
• Use scores from pool-based methods like

— Uncertainty sampling
— Query by committee
— Probabilistic active learning

Approach
Find best instances spatially (based on feature vectors) balancing:

• exploration (observe unsampled regions)

• exploitation (acquire labels in regions near decision boundaries to elaborate the
decision)
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IAL Scenarios: Stream: Budget in Streams

• Pools: absolute number (e.g. stop after 40 labels)

• Streams: relative definition necessary (e.g. buy 10%)

• How to distribute the budget over time?

— constantly (every 10th label→ no spatial selection necessary)
— almost constantly (with a small tolerance window) Kottke, Krempl, and Spiliopoulou,

“Probabilistic Active Learning in Data Streams”, 2015
— bounded (budget should not exceed 10%) Zliobaitė et al., “Active Learning With

Drifting Streaming Data”, 2013
— dynamic (budget changes over time)
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IAL Scenarios: Stream: Temporal usefulness (When to
buy?)
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IAL Scenarios: Stream: Temporal usefulness (When to
buy?)

• Labels in the beginning are more beneficial as they affect more future decisions
(resp. after changes)

• But: one does not know when change take place

• Standard technique: constant budget

Exploration vs. Exploitation

• Exploration: Sample randomly to be able to detect change

• Exploitation: Sample the most promising labels

• How to cope with gradual drifts?

• High budgets after change might cause problems due to less spatial usefulness
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IAL Processing Scenarios: Stream with Latency
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Train ML 
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Query label
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Verification
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New
datum

Labelled data

Time T

Wait for 
answer...

Verification Latency
• Delay between query and answer

• Achronologic: new unlabelled instances might
arrive before previously queried labels

• Redundancy in queries, if new instance is
similar to already queried (but not yet
obtained) one

• Knowledge gaps, if no new instance was
queried in time, before old labelled one got
forgotten

• Pham et al., “Stream-Based Active Learning for
Sliding Windows Under Verification Latency”,
2022 (first paper on verification latency and AL)
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IAL Processing Scenarios: Stream with Latency

Naive Approach

Instance stream

Delayed label stream

NOW

tn
x tn

y

Sliding training window

? ?+ + + + _ _

Figure: Naive (Latency-Ignorant) Approach
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IAL Processing Scenarios: Stream with Latency

Latency-Aware Approach
Sliding window when new label would arrive

(b) Simulate delayed labels (S)

Instance stream

Delayed label stream

NOW

(a) Forget outdated instances (F)

?+ + + _+ _ + 

Figure: Verification Latency-Aware Approach suggested in Pham et al., “Stream-Based Active
Learning for Sliding Windows Under Verification Latency”, 2022
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IAL Active Learning: Learning Objective
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IAL Learning Objective: Inductive vs. Transductive skip

Inductive
• Training and test data are different

• Objective: Generalising to unseen data

Transductive
• Same data used for training needs to be classified

• Objective: Mastering given (training) data set
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IAL Learning Objective: Inductive vs. Transductive skip

Particularities of Transductive AL
• Evaluation data is known beforehand, as test and train set are identical, no
need to build a generalised model

• Excluding instances from being predicted by the classifier is possible by querying
them from the oracle

Implications
• Ignore high aleatoric uncertainty for inductive setting

• Remove such instances by labelling for transductive setting

• See Kottke et al., “A Stopping Criterion for Transductive Active Learning”, 2022
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IAL Learning Objective: Inductive vs. Transductive

Transductive Gain
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Utility for inductive gain
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unlabeled instance of red class

unlabeled instance of blue class

usefulness estimation

highlow

decision boundary

labeled instance
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Figure: Transductive gain as sum of the utilities of inductive gain (left),
and of candidate gain (right) Kottke et al., “A Stopping Criterion for Transductive Active
Learning”, 2022, Fig.1
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IAL Initiatior of Interaction: Machine (Active Learning)
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Active Learning
• Machine is proactive in the interaction
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IAL Initiatior of Interaction: Human (Machine Teaching)
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Observe Learner
and Initiate Action

Machine Teaching
• Human is proactive in the interaction

• No direct knowledge transfer between
teacher (human) and learner (machine)

• Aim is designing an optimal training set

• See Tegen, “Interactive Online Machine
Learning”, 2022 (PhD thesis) and Tegen,
Davidsson, and Persson, “A Taxonomy of
Interactive Online Machine Learning
Strategies”, 2021 (review)
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IAL Initiatior of Interaction: Human (Machine Teaching)
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Triggers for human to add instances to training set
might be

• Trigger by error
• Trigger by state change
• Trigger by time
• Trigger by user factors
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IAL Active Learning: Selected Information
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IAL Active Learning: Selected Information

• We will continue with this after the poster session and coffee break

• Questions, comments, suggestions?
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Beyond active labeling
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IAL Beyond active labeling

X → Y
classifier

data acquisition

e.g., o : X → Y

strategyi) evaluat
ion

ii) acquisition choice
e.g., {x ∈ X}

iii) training data
Dp =

{
(xi, yi) : 1 ≤ i ≤ b

}
iv) re-training
DXY ∪ Dp

We often assume an oracle o : X → Y , but what if there is none?
• lack of (human) expertise / lack of data interpretability
• extreme data volumes

Also, labels aren’t the only cost factor.
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data acquisition acquisition choice

active labeling oracle o : X → Y feature vectors {x ∈ X}
active class selection generator g : Y → X class proportions p ∈ R|Y| }

this talk
active feature acquisition feature oracle f : I × J → R sample× feature indices

{
(i, j) ∈ I × J

}
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IAL Active class selection
Applications

ACS applications provide a generator g : Y → X that is costly.
• Particle detectors: accelerate a particle (Y) before it can be recorded (X)
• Gas sensors: inject a gas (Y) before it can be recorded (X)
• Brain-computer interaction: ask for an intent (Y) to record brain signal (X)
• Search engines for labeling: search for a concept (Y) to collect data (X)
• …

This resulting data is called “anti-causal”1 or “intrinsically labeled”2.

1 Schölkopf et al., “On causal and anticausal learning”, 2012.
2 Card and Smith, “The importance of calibration for estimating proportions from annotations”, 2018.

134



IAL Active class selection
Heuristic methods

Idea: acquire classes according to some utility measure u : Y → R,

heuristic utility u(y) intent

uniform3 1 optimize AUROC or balanced accuracy
proportional3 P(Y = y) optimize accuracy if P(Y = y) is known
inverse3 Accuracyh(y)

−1 improve badly predicted classes
improvement3 (Accuracyh(y)− LastAccuracyh(y))

−1 exploit improvements
redistriction3 ny, the number of changed predictions stabilize volatile decision boundaries

ACS-PAL4 1

m+
y

∑m+
y

i=1 uAL(xi) avg. pseudo-instance utility

RF-Impurity5 1
my

∑my
i=1 1− P(y | xi) avg. confusion

3 Lomasky et al., “Active class selection”, 2007, .
4 Kottke et al., “Probabilistic active learning for active class selection”, 2016.
5 Bicego et al., “Active class selection for dataset acquisition in sign language recognition”, 2023.
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PAC bounds

LT

LD
|LT − LD|

LS
|LT − LS |

target domain
(deployment)

source domain (ACS)

training sample (ACS)

εD

Label shift bound:6 For any εD > 0 and any fixed h ∈ H, it holds with probability
at least 1− δ, where δ = 4e−2|D|ε2D , that

|LT (h)− LS(h)| − εD ≤ |LT (h)− LD(h)| ≤ |LT (h)− LS(h)| + εD

6 Bunse and Morik, “Certification of model robustness in active class selection”, 2021.
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Certification

Certified hypothesis: Let ε ∈ R and let δ ≥ 0. A hypothesis h ∈ H is (ε, δ)-certified
for a set of class proportionsP if, with probability at least 1−δ,

LT (h) ≤ LS(h) + ε ∀ pT ∈ P

Distance certificate: Let (p, q) ∈ {(1,∞), (2, 2), (∞, 1)} be two vector norms.
h ∈ H is (p, ε, δ)-certified for a distance of d > 0 if it is cer-
tified for P = {pT : ∥pT − pS∥p ≤ d}.

For d = ε
∥ℓ∥q we have δ = 0, but ∥ℓ∥q ≤ ∥ℓ̂+ ε∥q requires

ε∗ = argminε>0∥ℓ̂+ ε∥q subject to
∑N

i=1 δi ≤ δ
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IAL Active class selection
A strategy for uncertain deployment class proportions

Consequence: we need prior assumptions about deployment class proportions.

Strategy: acquire data through gradient descent steps−∇mε
∗, where

ε∗(m) =

∫
P̂(pT = p)︸ ︷︷ ︸

prior

· ∥pS(m)− p∥p · ∥ℓ(m)∥∗q︸ ︷︷ ︸
upper loss bound

dp,
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IAL Active class selection
A strategy for uncertain deployment class proportions

12345
3

4

5

6

7

8

avg. rank ↓ (accuracy, pT = 0.1)
AC

S
ba

tc
h

certification7

inverse3

improvement3

redistriction3

proportional3

Outlook: non-decomposable loss functions, like F1 score.

7 Bunse and Morik, “Active class selection with uncertain deployment class proportions”, 2021.
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IAL Active feature acquisition

?

?

? ?
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lab
elinstance 1instance 2instance 3instance 4

Goal: select feature values xij to acquire

max
(i, j)∈I×J

u(i, j)

This task might occur at training or at test time.

AFA applications provide an oracle f : I × J → R
• Medical diagnosis: select examinations (xij) to take out
• Preprocessing: select features (xij) to compute from raw data
• …
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IAL Active feature acquisition
Approaches

method idea

matrix completion8 minimize classification & reconstruction error, omit well-reconstructed queries
confidence cascade9 sort features by cost, acquire each next feature for all uncertain instances
instance completion10 select instances for which to acquire all features

...

Today at 15:45: Beyer, Büttner, Spiliopoulou, “AFA and imputation on data streams”.

8 Huang et al., “Active feature acquisition with supervised matrix completion”, 2018.
9 desJardins et al., “Confidence-based feature acquisition to minimize training and test costs”, 2010.
10 Zheng and Padmanabhan, “On active learning for data acquisition”, 2002.
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IAL Beyond active labeling

X → Y
classifier

data acquisition

e.g., o : X → Y

strategyi) evaluat
ion

ii) acquisition choice
e.g., {x ∈ X}

iii) training data
Dp =

{
(xi, yi) : 1 ≤ i ≤ b

}
iv) re-training
DXY ∪ Dp

We often assume an oracle o : X → Y , but what if there is none?
• lack of (human) expertise / lack of data interpretability
• extreme data volumes

Also, labels aren’t the only cost factor.
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IAL Content

• Meta-Learning (Definition & Goal)

• Overview of Explainable Machine Learning

• Meta-Learning for Explainable Active Learning

• Example of Interpretable Active Sample Selection
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Definition & Goal

Definition Learn over a series (distributions) of many different learning tasks.
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Definition Learn over a series (distributions) of many different learning tasks.

→ Learning-to-Learn
Goal Enable models to acquire new knowledge or adapt quickly to new tasks with
minimal data.
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IAL Meta-Learning

Definition Learn over a series (distributions) of many different learning tasks.

Goal Enable models to acquire new knowledge or adapt quickly to new tasks with
minimal data.
Use Cases rare events, test-time constraints, data collection costs, etc.
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IAL Meta-Learning
Meta-Supervised Learning

• Supervised Learning
Input: x, Output: y, (xi, yi) ∈ D
Goal: Learn a function f̂θ : X→ Y such that

f̂θ(xi, θ) ≈ f(xi) = yi, ∀xi ∈ X, yi ∈ Y (1)

where θ ∈ Rn is an unknown (hyper)parameters vector learnt using D.
• Meta Supervised Learning?
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IAL Meta-Learning
Meta-Supervised Learning
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IAL Meta-Learning for Active Learning
Taxonomy
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Taxonomy
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IAL eXplainable Machine Learning XML
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IAL Meta-Learning for Explainable Active Learning
Interpretable Meta-Model

How?
• Use interpretable base models like decision trees, rule-based models, or linear
models within the meta-learning framework.

• Integration of interpretable models that enhance the overall AL pipeline
interpretability.

Consequences
• These models inherently offer transparency compared to complex, black-box
architectures.

• Transparency in how the meta-model combines information from tasks leads to
an interpretable AL system.
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Explainable Active Sample Selection

How?
• Provide explanations for the model’s selected samples during Active Learning (AL).

• Use techniques like uncertainty estimation, saliency maps, or gradient-based
attribution to justify sample selection.

Consequences
• Explanations guide human annotators in understanding why certain samples are
chosen for labeling:
— Importance to the model’s decision
— Contribution to the input distribution
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IAL Meta-Learning for Explainable Active Learning
Attention Mechanisms

How?
• Employ neural networks/ reinforcement learning with neural networks

• Use attention mechanisms to highlight important input features, e.g.,
gradient-based ...

• Visualize attention maps to understand the model’s focus.

Consequences
• Identify key factors influencing the model’s decision for data instance selection.
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IAL Meta-Learning for Explainable Active Learning
Post-hoc Explanation Techniques

How?
• Integrate post-hoc explanation methods into meta-learning.

• Utilize LIME or SHAP to generate local explanations for individual data instances’
predictions.

Consequences
• Gain insights into specific factors driving data point selection decisions.
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IAL Meta-Learning for Explainable Active Learning
Regularization with Explainability Constraints

How?
• Incorporate regularization terms into the meta-learning optimization process.

• Examples include discouraging complex decision boundaries or enforcing feature
importance sparsity.

Consequences
• Encourage models to produce more interpretable decisions regarding the active
sample selection process.
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IAL Meta-Learning for Explainable Active Learning
Human-in-the-Loop Feedback

How?
• Involve human annotators in the Active Learning process.

• Gather feedback from annotators to refine model explanations.

Consequences
• Explanations aligned with human understanding and preferences for improved
interpretability.

167



IAL Example of Interpretable Active Sample Selection
Interpretation of the sample selection for Bike dataset

Table: Feature OF Bike Dataset

Taguchi, Yusuke, Keisuke Kameyama, and Hideitsu Hino. ”Active Learning with Interpretable Predictor.” 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2019.
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IAL Example of Interpretable Active Sample Selection
Interpretation of the sample selection for Bike dataset

Table: Feature OF Bike Dataset Figure: Variable importance for the main model before 14-th
sample selection
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IAL Example of Interpretable Active Sample Selection
Analysis at the 14-th iteration of active sample selection:

Figure: Variable importance for the main model before
14-th sample selection

Figure: Variable importance for the Meta-model before
14-th sample selection

Figure: Summary of Hum before the 14-th data point
selection.

→ The value of Hum in the actually selected sample at
the 14-th iteration of the algorithm was 0.24.
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IAL Practical Challenges of AL in Real Environments
• The Imbalanced Data Problem

• Low Query Budget
• Using Initial Knowledge for Training Learning Models
• The Concept Drift Phenomenon in Data Streams
• Stopping Criteria
• Error prone and/or multiple oracles
• Noisy Labeled Data
• AL with Crowdsourcing Labelers
• AL with Outliers
• AL in High-Dimensional Environments
• ML-Based Active Learners11

11 Tharwat and Schenck, “A Survey on Active Learning: State-of-the-Art, Practical Challenges and Research
Directions”, 2023.
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IAL AL with Different Technologies (Research Areas)

• AL with Deep Learning

• AL with Optimization

• AL with Simulation

• AL with Design of Experiments

• Few-Shot Learning with AL
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Thank you!
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